LOGLOG COUNTING OF LARGE CARDINALITIES

MARIANNE DURAND AND PHILIPPE FLAJOLET

ABSTRACT. Using an auxiliary memory smaller than the size of this abstract,
the LoGLOG algorithm makes it possible to estimate in a single pass and within
a few percents the number of different words in the whole of Shakespeare’s
works. In general the LoGLOG algorithm makes use of m “small bytes” of
auxiliary memory in order to estimate in a single pass the number of distinct
elements (the “cardinality”) in a file, and it does so with an accuracy that
is of the order of 1/4/m. The “small bytes” to be used in order to count
cardinalities till Nmax comprise about loglog Nmax bits, so that cardinalities
well in the range of billions can be determined using one or two kilobytes of
memory only. The basic version of the LOGLOG algorithm is validated by a
complete analysis. An optimized version, super-LOGLOG, is also engineered
and tested on real-life data. The algorithm parallelizes optimally.

1. INTRODUCTION

The problem addressed in this note is that of determining the number of distinct
elements, also called the cardinality, of a large file. This problem arises in several
areas of data-mining, database query optimization, and the analysis of traffic in
routers. In such contexts, the data may be either too large to fit at once in core
memory or even too massive to be stored, being a huge continuous flow of data
packets. For instance, Estan et al. [3] report traces of packet headers, produced at
a rate of 0.5GB per hour of compressed data (!), which were collected while trying
to trace a “worm” (Code Red, August 1 to 12, 2001), and on which it was necessary
to count the number of distinct sources passing through the link. We propose here
the LoGLOG algorithm that estimates cardinalities using only a very small amount
of auxiliary memory, namely m memory units, where a memory unit, a “small
byte”, comprises close to loglog Npax bits, with Ny ax an a prior: upperbound on
cardinalities. The estimate is (in the sense of mean values) asymptotically unbiased;
the relative accuracy of the estimate (measured by a standard deviation) is close
to 1.05/+4/m for our best version of the algorithm, Super-LocLoa. For instance,
estimating cardinalities till Ny, = 227 (a hundred million different records) can
be achieved with m = 2048 memory units of 5 bits each, which corresponds to 1.28
kilobytes of auxiliary storage in total, the error observed being typically less than
2.5%. Since the algorithm operates incrementally and in a single pass it can be
applied to data flows for which it provides on-line estimates available at any given
time. Advantage can be taken of the low memory consumption in order to gather
simultaneously a very large number of statistics on huge heterogeneous data sets.
The LoGL0G algorithm can also be fully distributed or parallelized, with optimum
speed-up and minimal interprocess communication. Finally, an embedded hardware
design would involve strictly minimal resources.

Motivations. A traditional application of cardinality estimates is database
query optimization. There, a complex query typically involves a variety of set-
theoretic operations as well as projections, joints, and so on. In this context,
knowing “for free” cardinalities of associated sets provides a valuable guide for se-
lecting an efficient processing strategy best suited to the data at hand. Even a

Date: April 1, 2003. Submitted to the European Symposium on Algorithms, ESA’2003.
1

2 MARIANNE DURAND AND PHILIPPE FLAJOLET

problem as simple as merging two large files with duplicates can be treated by var-
ious combinations of sorting, straight merging, and filtering out duplicates (in one
or both of the files); the cost function of each possible strategy is then determined
by the number of records as well as by the cardinality of each file. Probabilistic
estimation algorithms also find a use in large data recording and warehousing en-
vironments. There, the goal is to provide an approximate response in time that is
orders-of-magnitude less than what computing an exact answer would require: see
the description of the AQUA Project by Gibbons et al. in [8].

The analysis of traffic in routers, as already mentioned, benefits greatly of cardi-
nality estimators—this is lucidly exposed by Estan et al. in [2, 3]. Certain types of
attacks (e.g., “denial of service” and “port scans”) are betrayed by alarmingly high
counts of certain characteristic events at the level of routers. In such situations,
there is usually not enough resource available to store and search on-line the very
large number of events that take place even in a relatively small time window.

Probabilistic counting algorithms can also be used within other algorithms when-
ever the final answer is the cardinality of a large set and a small tolerance on the
quality of the answer is acceptable. Palmer et al. [8] describe the use of such algo-
rithms in an extensive connectivity analysis of the internet topology. For instance,
one of the tasks needed there is to determine, for each distance h, the number of
pairs of nodes that are at distance at most h in the internet graph. Since the graph
studied by [8] has close to 300,000 nodes, the number of pairs to be considered is
well over 10'°, upon which costly list operations must be performed by exact algo-
rithms. In contrast an algorithm that would be, in the abstract, suboptimal can
be coupled with adapted probabilistic counting techniques and still provide reliable
estimates. In this way, the authors of [8] were able to extract extensive metric in-
formation on the internet graph by keeping a reduced collection of data that reside
in core memory. They report a reduction in run-time by a factor of more than 400.

Algorithms. The LoGLOG algorithm is probabilistic. Like in many similar
algorithms, the first idea is to appeal to a hashing function in order to randomize
data and bring them to a form that resembles random (uniform, independent)
binary data. It is this hashed data set that is distilled into cardinality estimates
by the algorithm. Various algorithms perform various tests on the hashed data
set, then compare “observables” to what probabilistic analysis predicts, and finally
“deduce” a plausible value of the parameter of interest. In the case of LocLoG
counting, the observable should only be linked to cardinality, and hence be totally
independent of the nature of replications and the ordering of data present in the file,
on which no information at all is available. (Depending on context, collisions due
to hashing can either be neglected or their effect can be estimated and corrected.)

Whang, Zanden, and Taylor have developed Linear Counting, which distributes
(hashed) values into buckets and only keeps a bitmap indicating which buckets
are hit. Then observing the number of hits in the table leads to an estimate of
cardinality. Since the number of buckets should not be much smaller than the car-
dinalities to be estimated (say, > Nmax/10), the algorithm has space complexity
that is O(Nmax) (typically, Nmax/10 bits of storage). The linear space is a draw-
back whenever large cardinalities, multiple counts, or limited hardware are the rule.
Estan, Varghese, and Fisk [3] have devised a multiscale version of this principle,
where a hierarchical collection of small windows on the bitmap is kept. From simu-
lation data, their Multiresolution Bitmap algorithm appears to be about 20% more

LOGLOG COUNTING OF LARGE CARDINALITIES 3

ghfffghfghgghggggghghheehfhfhhgghghghhfgffffhhhiigfhhffgfiihfhhh
igigighfgihfffghigihghigfhhgeegeghgghhhgghhfhidiigihighihehhhfgg
hfgighigffghdieghhhggghhfghhfiiheffghghihifgggffihgihfggighgiiif
fjgfgjhhjiifhjgehgghfhhfhjhiggghghihigghhihihgiighgfhlgjfgjjjmfl

F1Gure 1. The LocLoaG Algorithm with m = 256 condenses the
whole of Shakespeare’s works to a table of 256 “small bytes” of 4
bits each. The estimate of the number of distinct words in this run
is n° = 30897 (the true answer is n = 28239), which represents a
relative error of +9.4%.

accurate than Probabilistic Counting (discussed below) when the same amount of
memory is used. The best algorithm of [3] for flows in routers, Adaptive Bitmap, is
reported to be about 3 times more efficient than either Probabilistic Counting or
Multiresolution Bitmap, but is has the disadvantage of not being universal, as it
makes definite statistical assumptions (“stationarity”) regarding the data input to
the algorithm. (We recommend the thorough engineering discussion of [3].)

Closer to us is the Probabilistic Counting algorithm of Flajolet and Martin [7].
This uses a certain observable that has excellent statistical properties but is rel-
atively costly to maintain in terms of storage. Indeed, Probabilistic Counting es-
timates cardinalities with an error close to 0.78/4/m given a table of m “words”,
each of size about log, Nmax-

Yet another possible idea is sampling. One may may use any filter on hashed
values with selectivity p < 1, store exactly and without duplicates the data items
filtered and return as estimate 1/p times the corresponding cardinality. Wegner’s
Adaptive Sampling (described and analysed in [5]) is an elegant way to maintain
dynamically varying values of p. For m “words” of memory (where here “word”
refers to the space needed by a data item), the accuracy is about 1.20/4/m, which
is about 50% less efficient than Probabilistic Counting.

An insightful complexity-theoretic discussion of approximate counting is pro-
vided by Alon, Matias, and Szegedy in [1]. The authors discuss a class of “frequency—
moments” statistics which includes ours (as their Fy statistics). Our LocLog Al-
gorithm has principles that evoke some of those found in the intersection of [1] and
the earlier [7], but contrary to [1], we develop here a complete eminently practical
algorithmic solution and provide a very precise analysis, including bias correction,
error and risk evaluation, as well as complete dimensioning rules.

We estimate that our LOGLOG algorithm outperforms the earlier Probabilistic
Counting algorithm and the similarly performing Multiresolution Bitmap of [3] by
a factor of 3 at least as it replaces “words” (of 16 to 32 bits) by “small bytes” of typ-
ically 5 bits each, while being based on an observable that has only slightly higher
dispersion than the other two algorithms—this is expressed by our two formulae
1.30/4/m (LocLog) and 1.05/4/m (super-LoGLog). This places our algorithm
in the same category as Adaptive Bitmap of [3]. However, compared to Adap-
tive Bitmap, the LOGLOG algorithm has the great advantage of being wuniversal
as it makes no assumptions on the statistical regularity of data. We thus believe
LogLoG and its improved version Super—-LOGLOG to be the best general-purpose
algorithmic solution currently known to the problem of estimating large cardinali-
ties.

4 MARIANNE DURAND AND PHILIPPE FLAJOLET

Algorithm LOGLOG(M: Multiset of hashed values; m = 2*)
Initialise MM, ..., M(™) to 0;
let p(y) be the rank of first 1-bit from the left in y;
for x = b1by--- € M do
set j := (by - - bg)2 (value of first k bits in base 2)
set M) := max(MY p(bpy1bgyz---);

s pmG L .
return £ := a,,,m2m as cardinality estimate.

FI1GURE 2. The principle of the basic LOGLOG algorithm.

2. THE BASIC LOGLOG ALGORITHM

In computing practice, one deals with a multiset of data items, each belonging
to a discrete universe Y. For instance, in the case of natural text, ¢/ may be the
set of all alphabetic strings of length < 28 (‘antidisestablishmentarianism’), double
floats represented on 64 bits, and so on. A multiset 90t of elements of I/ is given and
the problem is to estimate its cardinality, that is, the number of distinct elements
it comprises.

We shall assume throughout that a hash function, h, is available that transforms
elements of U/ into sufficiently long binary strings, in such a way that bits com-
posing the hashed value closely resemble random uniform independent bits. This
pragmatic attitude' is justified by Knuth who writes in [10]: “It is theoretically im-
possible to define a hash function that creates random data from non-random data
in actual files. But in practice it is not difficult to produce a pretty good imitation
of random data.” Given this, we formalize our basic problem as follows.

Take U = {0,1}* as the universe of data endowed with the uniform (prod-
uct) probability distribution. An ideal multiset 9 of cardinality n is a
random object that is produced by first drawing an n-sequence indepen-
dently at random from U/, then replicating elements in an arbitrary way,
and finally, applying an arbitrary permutation.

The user is provided with the (extremely large) ideal multiset 9% and its
goal is to estimate the (unknown to him) value of n at a small computational
cost. No information is available, hence no statistical assumption can be
made, regarding the behaviour of the replicator-shuffler daemon.

(The fact that we consider infinite data is a convenient abstraction at this stage;
we discuss its effect, together with needed adjustments, in Section 5 below.)

The basic idea consists in scanning 9t and observing the patterns of the form
0*1 that occur at the beginning of (hashed) records. For a string z € {0,1}°°, let
p(z) denote the position of its first 1-bit. Thus p(1---) = 1, p(001---) = 3, etc.
Clearly, we expect about n/2F amongst the distinct elements of 9 to have a p-value
equal to k. In other words, the quantity,

R(20) = max p(z),

can reasonably be hoped to provide a rough indication on the value of log,n. It
is an “observable” in the sense above since it is totally independent of the order

IThe more theoretically inclined reader may prefer to draw h at random from a family of
universal hash functions; see, e.g., the general discussion in [12] and the specific [1].

LOGLOG COUNTING OF LARGE CARDINALITIES 5

and the replication structure of the multiset 9. In fact, in probabilistic terms, the
quantity R is precisely distributed in the same way as 1 plus the maximum of n
independent geometric variables of parameter % This is an extensively researched
subject; see, e.g., [13]. It turns out that R estimates log, n with an additive bias
of 1.33 and a standard deviation of 1.87. Thus, in a sense, the observed value of R
estimates “logarithmically” n within +1.87 binary orders of magnitude. Notice
however that the expectation of 2% is infinite so that 2f cannot in fact be used to
estimate n.

The next idea consists in separating elements into m groups also called “buckets”,
where m is a design parameter. With m = 2F, this is easily done by using the first &
bits of x as representing in binary the index of a bucket. One can then compute the
parameter R on each bucket, after discarding the first k bits. If M) is the (random)
value of parameter R on bucket number j, then the arithmetic mean % Z;n:1 M@,
can legitimately be expected to approximate log,(n/m) plus an additive bias. The
estimate of n returned by the LogLogG algorithm (Figure 2) is accordingly

(1) E = ame%EM(j).

The constant a,,, which comes out of our later analysis as

2-1/m _1\~" 1 [.
@) O = (F(—l/m)W) o T(s) '_E/O et dt,

precisely corrects the systematic bias in the asymptotic limit. One may also hope
for a greater concentration of the estimates, hence better accuracy, to result from
averaging over m > 1 values. The main characteristics of the algorithm are sum-
marized below in Theorem 1. The letters E, V denote expectation and variance,
and the subscript n indicates the cardinality of the underlying random multiset.

Theorem 1. Consider the basic LOGLOG algorithm applied to an ideal multiset of
(unknown) cardinality n and let E be the estimated value of cardinality returned by
the algorithm.

(7) The estimate E is asymptotically unbiased in the sense that, as n — oo,

%En (E) =1461,+0(1), where |61, < 1075,

(i1) The standard error defined as =1/V,(E) satisfies as n — oo,

1 V. (E) = IB—\/Trln + 62, + 0(1), where |02, < 1075.

One has: fras = 1.30540, froos = 1.29897, oo = 1/ 15 log> 2 + 172 = 1.20806.

In summary, apart from completely negligible fluctuations whose amplitude is
less than 109, the algorithm provides asymptotically a valid estimator of n. The
standard error, which measures in a mean-quadratic sense and in proportion to n
the deviations to be expected, is closely approximated by the formula?

1.
Standard error ~ ﬁ

vm

2We use ‘~’ to denote asymptotic expansions in the usual mathematical sense and reserve the
informal ‘a’ for “approximately equal”.

6 MARIANNE DURAND AND PHILIPPE FLAJOLET

o 1z 14 16 18 20 22 o 1z 14 16 18 20 22

FiGURE 3. The distribution of observed register values for the Pi
file, n ~ 2 - 107 with m = 1024 [left]; the distribution P, (M = k)
of a bucket register M, for v = 2-10* [right].

For instance, m = 256 and m = 1024 give a standard error of 8% and 4% respec-
tively. (These figures are compatible with what was observed on the Shakespeare
272 + log? 2 — .
—oim where a, = e77V2 = 0.79402
(v is Euler’s constant), so that, in practical implementations, «,, can be replaced
by a without much detectable bias as soon as m > 64, say (ags = 0.783).

The proof of Theorem 1 will occupy the whole of the next section.

data.) Observe also that a,;, ~ aw —

3. THE BASIC ANALYSIS

Throughout this note, the number of distinct values in the data set is denoted by
n. The LoGLoOG algorithm provides an estimator, E, of this unknown value n. Here,
we first provide formula for the expectation and variance of E. Asymptotic analysis
is performed next: Subsection 3.1 introduces the Poisson model where the unknown
cardinality n is allowed to vary according to a Poisson law, while Subsection 3.2
shows the Poisson model to be asymptotically equivalent to the “fixed—n” model
that we need. The expected value of the estimator is found to be asymptotically n,
up to minute fluctuations. This establishes the asymptotically unbiased character
of the algorithm as asserted in (i) of Theorem 1. The standard deviation of the
estimator is also proved to be of the order of n with the proportionality coefficient
providing the value of the standard error, hence the accuracy of the algorithm, as
asserted in (47) of Theorem 1.

We start by examining what happens in a bucket that receives v elements (Fig-
ure 3). The random variable M is, we recall, the maximum of v random variables
that are independent and geometrically distributed according to P(Y > k) = 5.
Consequently, the probability distribution of M is characterized by

P, (M < k) = (1—2%>V, P, (M = k) = (1-%,9)"— (1—2%_1)".

The bivariate (exponential) generating function of this family of probability distri-
butions as v varies is then

— _ ki _ ko _z(1—1/2FtY) z(1—1/2%)
(3) G(z,u):= Zk]P’,,(M =k)u = ;u (e e) ,

LOGLOG COUNTING OF LARGE CARDINALITIES 7

as shown by a simple calculation. The starting point of the analysis is an expression
in terms of G of the mean and variance of

Z = E/ay =m2m =i M@

which is the unnormalized version of the estimator E. With the expression [2"]f(z)
representing the coefficient of 2™ in the power series f(z), we state:

Lemma 1. The expected value and variance of the unormalized estimator Z are

=
N
I

mn![2"|G (%,21/"‘)7”) N
m?n![z"] (G (%,22/’“)) — (m”![z"]G (i,Ql/m))

m

=
N
I

Proof. The multinomial convolution relations corresponding to mth powers of generating
functions imply that n![2"]G(z/m,u)™ is the probability generating function of }°, M @),
(The multinomials enumerate all ways of distributing elements amongst buckets.) The
expressions for the first and second moment of Z are obtained from there by substituting
w2/ and u > 22/™, O

Proving Theorem 1 is reduced to estimating asymptotically these quantities.

3.1. Poissonization. In this subsection we “poissonize” the problem of computing
the expected value and the variance. In this way, calculations can take advantage
of powerful properties of the Mellin transform. (The next subsection is dedicated
to “depoissonization” of the results obtained here.)

The Poisson law of rate A is the law of a random variable X such that P(X =

l) = e*"%. Given a class M of probabilistic models indexed by integers s, pois-
sonizing means considering the “supermodel” where model M is chosen according
to a Poisson law of rate A. Since the poisson model of a large parameter X is pre-
dominantly a mixture of models M; with s in the vicinity of A (the Poison law
is “concentrated” near its mean), one can expect, in a number of circumstances,
properties of the fixed-n model M,, to be reflected by corresponding properties of
the Poisson model taken with rate A = n.

A wuseful feature is that expressions of moments and probabilities under the
Poisson model are closely related to exponential generating functions of the fixed-
n models. This owes to the fact that if f(2) =) fn2"/n! is the exponential
generating function of expectations of a parameter, then the quantity

AN = Y de M

gives the corresponding expectation under the Poisson model. In this way, one sees
that the quantities

E, = mG(%ﬂl/m)me*"

(4) m m
m2G (%,22/’”) e " — (mG (%,21/’”) e‘")2

Vn

are respectively the mean and variance of Z when the cardinality of the underlying
multiset obeys a Poisson law of rate A = n.

8 MARIANNE DURAND AND PHILIPPE FLAJOLET

Lemma 2. The Poisson mean and variance &, and V,, satisfy as n — 0o:

®) o
£ ~ [(F(—l/m)%) +en

V. ~ [(n—z/m)w)m— (n—umﬂ)zmw

n

-n2.

log 2 log 2

where |e,| and |n,| are bounded by 10~5.

The proof crucially relies on the Mellin transform defined, for a real function
f(z) as the complex function

(s) = / " foye .

(In particular, the transform of e~ % is the gamma function I'(s).) The two major
properties of the Mellin transform are as follows: (i) there is a correspondence
between asymptotic properties of the original function f and singularities of the
transforms f*; (i¢) harmonic sums defined as sums of the form Y Af(uz) have a
transform that factorizes as (D Ap~*%) - f*(s). The conjunction of both properties
then renders possible the analysis of fairly intricate combinatorial sums: see [6]
for an extensive survey and Szpankowski’s book [14] for many applications to the
analysis of algorithms. (Property (i) results from the Mellin inversion formula
and the residue theorem; Property (ii) reflects the action of Mellin transforms on
rescaled functions.)

Proof. One can rewrite the two quantities in (4) as
En=mAM)™, Vu+E =m’B(n)",

where A(z) and B(z) are harmonic sums,

A) = 32" (e(w/2) — o(e/2)), Bl@) =32/ (p(a/2™) - p(a/2))

2

with () = e */™. This results from the expression of G in Equation (3). The Mellin
transform of ¢ is ¢*(s) = m°I'(s), and as a consequence of the action of the Mellin
transform on harmonic sums, one finds

* * 1 * * 1
A(s) = ¢"(s)(2° — 1)ma B*(s) = ¢™(s)(2° - 1)m-
Expectation. The fundamental strip of A*(s) (the strip where the integral giving the
transform converges absolutely) is (—1, —1/m). The singularities of A*(s) on the vertical
line R(s) = —1/m are located at S(s) = 0 mod (27/log2). Each of these singularities
induces a contribution to the asymptotic expansion of A(z). The main contribution arises

from the singularity located on the real axis. Near s = —1/m, one has
—1/m
* —a . —1/m 2 -1
~— h = (-1 _
(6) A*(s) S ijm’ with a=m (—=1/m) Tog 2

The Mellin transfer theorem gives the corresponding contribution az'/™ in the asymptotic
expansion of A(z) at infinity. For the non-real singularities located at —1/m + 2ikw/ log 2,
the local expansions are

—ag

. 2ikr\ 27Ym —1
A~ T im)7

. — 71/m1—1 -1 kbl
with ar =m (/m~|—log2 Tog 2

LOGLOG COUNTING OF LARGE CARDINALITIES 9

Each of these singularities adds a contribution to the asymptotic of A(z) of the form
apwt/mT2kT/1082 - The fast decrease of the I' function along a vertical line implies that
these constants ay, are very small. (For instance |I'(2i7/log2)| = 5-10~7 and |T'(4iw/ log 2)|
3-107'2.) As a consequence, the value £, = mA(n)™ is asymptotic to ma™n + €,n where
€n is a fluctuation® of amplitude < 107%. This proves the mean value estimate in (5).

Variance. For the variance, observe that the fundamental strip of B*(s) is (—1, —2/m).
The “major” pole is now at s = —2/m, where there holds

(7) B*(s) ~ b with b= m~2™1(—2/m)>

-1
s+2/m
The contribution of this singularity to B(z) is thus bz>/™. Neglecting the tiny fluctuations,
the Mellin transfer theorem shows that B(z) ~ bz?/™. The variance estimate in (5) is
then a direct consequence. O

3.2. Depoissonization. Finally, the asymptotic forms of the first two moments
of the LOGLOG estimator can be transferred back from the Poisson model to the
fixed-n model that underlies Theorem 1. The process involved is known as “de-
poissonization”. Various options are discussed in Chapter 10 of Szpankowski’s
book [14]. We choose the method called “analytic depoissonization” by Jacquet
and Szpankowski, whose underlying engine is the saddle point method applied to
Cauchy integrals; see [9, 14]. In essence, the wvalues of an exponential generating
function at large arguments are closely related to the asymptotic form of its coeffi-
cients provided the generating function decays fast enough away from the positive
real axis in the complex plane.

Lemma 3. The first two moments of the LOGLOG estimator are asymptotically
equivalent under the Poisson and fixed—n model:

E,(Z2) ~ &Ep, Vo(Z) ~ Vn
Proof. First we define the cone Sy as
Se = {z:|arg z| <0}, with |6] < /2.

The Basic Depoissonization Lemma of [9] can be rephrased for the expected value as
follows. Assume that there exists § > 0, @ < 1, such that

(C1): inside the cone Sp there holds e™*G (z/m,Zl/m)m = 0(|z]),

(C2): outside the cone Sy, there holds G (z/m, 21/m)m = 0(e2)).
Then E(Z,) ~ £,. The generating function G(z,u) of (3) rewrites as

Gz, 21/7m) = 1 37 gl m (1 e m),
k

If R(z) > 0, we have G(z/m,2'/™) = O(z'/™e*/™). The condition (Ci) is then clearly
satisfied for any § < w/2. For the second condition, (C2), we observe that if § > 0,
equivalently, ®(z) > 0,then there exists an o, 0 < a < 1; if R(z) < 0, then G(z/m,2"/™) =
O(2'/™). The proof for the variance is entirely similar. O

We can now conclude the proof of Theorem 1. The unnormalized estimator Z
grows like n/a,, by Lemmas 2 and 3. Thus the normalized estimator E = a,, Z is
asymptotically unbiased. The standard error is, upon neglecting small fluctuations,
asymptotic to vb™ma—2™ — 1, with a, b asin (6) and (7), again by virtue of Lemmas 2

3Fluctuations with tiny values are inherent in the problem. Though completely offset by
statistical fluctuations, they still make the analysis intrinsically non-elementary.

10 MARIANNE DURAND AND PHILIPPE FLAJOLET

and 3. The quantity displayed is precisely 8,,/+/m in the notations of Theorem 1.
Easy numerical calculations and straight asymptotic analysis of 3,, conclude the
evaluations stated there.

4. SPACE REQUIREMENTS

Now that the correctness—the absence of bias as well as accuracy—of the basic
LoGLOG algorithm has been established, there remains to see that it performs as
promised and only consumes O(loglogn) bits of storage if counts till n are needed®.

In its abstract form of Section 1, the LoGLOG algorithm operates with poten-
tially unbounded integer registers and it consumes m of these. What we call an
(-restricted algorithm is one in which each of the M) registers is made of £ bits,
that is, it can store any integer between 0 and 2¢ — 1. We state a shallow result only
meant to phrase mathematically the log-log property of the basic space complexity:

Theorem 2. Let w(n) be a function that tends to infinity arbitrarily slowly and
consider the function
n
£(n) = log, log, (E) + w(n).
Then, the £(n)-restricted algorithm and the LOGLOG algorithm provide the same
output with probability tending to 1 as n tends to infinity.

The auxiliary tables maintained by the algorithm then comprise m “small bytes”,
each of size £(n). In other words, the total space required by the algorithm in order
to count till n is

mlog, log, (%) (I1+0(1)).

(The m in the denominator is unnecessary but it is kept for consistency with later
developments.) The hashing function needs to hash values from the original data
universe onto exactly 2¢™) +1log, m bits. Observe also that, whenever no discrepancy
is present at the value n itself, the restricted algorithm automatically provides the
right answer for all values n' < n.

Proof. First, by standard properties of the multinomial distribution, the probability that
any bucket receives more than 2n/m elements is exponentially small. Such cases can thus
be discarded. Then the probability that any single bucket has a register value M that
exceeds k is (1—(1—27%)?"/™). Consequently, the overall probability of failure is bounded
from above by

2n/m
(8) m- (1 - (1 - 2‘22“)) .
n —2°M 41

£
This last quantity is closely approximated by 4n - 277 = 4m (— . Thus, the

m
probability of a failure decreases much faster than any negative power of n. O

Assume for instance that we wish to count cardinalities till 227, that is, over a
hundred million, with an accuracy of about 4%. By Theorem 1, one should adopt
m = 1024 = 21°. Then, each bucket is visited roughly n/m = 2'7 times. One
has log, log, 217 = 4.09. Adopt w = 0.91, so that each register has a size of £ = 5

4A counting algorithm exhibiting a log-log feature in a different context is Morris’s Approzimate
Counting [11] analysed in [4].

LOGLOG COUNTING OF LARGE CARDINALITIES 11

bits, i.e., a value less than 32. Applying the upperbound of (8) shows that an /-
restriction will have little incidence on the result: the probability of a discrepancy®
is lower than 12%. In summary: The basic LOGLOG counting algorithm makes it
is possible to estimate cardinalities till 103 with a standard error of 4% using 1024
registers of 5 bits each, that is, a table of 640 bytes in total.

5. ALGORITHMIC ENGINEERING

In this section, we describe a concrete implementation of the LocLoG algorithm
that incorporates the probabilistic principles seen in previous sections. At the same
time, we propose an optimization that has several beneficial effects: () it increases
at no extra cost the accuracy of the results, i.e., it decreases the dispersion of the
estimates around the mean value; (i7) it allows for the use of smaller register values,
thereby improving the storage utilization of the algorithm and nullifying the effect
of length restriction discussed in Section 4.

The fundamental probability distribution is that of the value of the M-register
in a bucket that receives v elements (where v & n/m). This is the maximum of v
geometric random variables with mean close to log, n. The tails of this distribution,
though exponential, are still relatively “soft”, as there holds P, (M > log, v + k) ~
2~k Since the estimate returned involves an exponential of the arithmetic mean of
bucket registers, a few exceptional values may still distort the estimate produced
by the algorithm, while more tame data will not induce this effect. Altogether,
this phenomenon lies at the origin of a natural dispersion of estimates produced by
the algorithm, hence it places a limit on the accuracy of cardinality estimates. A
simple remedy to the situation consists in using truncation:

Truncation Rule. When collecting register values in order to produce the
final estimate, retain only the mg := |fom] smallest values and discard the
rest. There 6 is a real number between 0 and 1, with 8y = 0.7 producing
near-optimal results. The mean of these registers is computed and the esti-
mate returned is mg&m2"+o by M(J), where ¥* indicates the truncated sum.
The modified constant a,,, ensures that the algorithm remains unbiased.

When the truncation rule is applied, accuracy does increase. An empirically deter-

mined formula for the standard error is 12 when the Truncation Rule with 8 =

m)
0.7 is employed.

A serendipitous consequence of this technique is that larger values of the registers
play no réle in the final estimate. Consequently, length restrictions in the sense of
Section 4 can be pushed considerably further. Here is for instance a table of the
maximum value of registers ever taken into account by the Restriction Rule on 100
simulations (for random data and for each (n,m)):

log, m 6 7 8 9 10 11
n = 100, 000 13 12 11 10 9 8
n=1,000,000 | 17 16 14 13 12 11

Such empirical studies justify the fact that register values may be ceiled at the
value [log, (£)] + &, without detectable effect for § = 3. In other words, one may

n
m
freely combine the algorithm with restriction as follows:

5In addition, a correction factor, calculated according to the principles of Section 3, could
easily be built into the algorithm, in order to compensate the small bias induced by restriction

12 MARIANNE DURAND AND PHILIPPE FLAJOLET

1.054

h 1 , MAJN
1.0571!‘ \ﬂa f\ 0.95 - h h WW)
0.951:“ 0.9 \

\“JJ \”\AWNF\ .00 W\\/"

n

.85

o 10000 20000 200000 400000 600000

FIGURE 4. The evolution of the estimate (divided by the current
value of n) provided by super-LOGLOG on all of Shakespeare’s
works: (left) words; (right) pairs of consecutive words. Here m =
256 (standard error=6.5%).

Restriction Rule. Use register values that are in the interval [0..B],

where
Nn
[log2 (—ax> +3-‘ < B.
m

For instance for the data at the end of Section 4, with n = 227, m = 1024, the
value B = 20 (encoded on 5 bits) is sufficient. But now, the probability that
length-restriction affects the estimate of the algorithm drops tremendously.

Fact 1. Combining the basic LOGLOG counting algorithm, the
Truncation Rule and the Restriction Rule yields the super-LOGLOG
algorithm that estimates cardinalities with a standard error of

105
< L

when m “small bytes” are used. Here a small byte has size

o o (52 3] |

that is, 5 bits for mazimum cardinalities Npax well over 108.

Length of the hash function and collisions. The length H of the hash
function—how many bits should it produce?— is guided by previous considerations.
There must be log, m bits reserved for bucketing and the bound on register values
should be at least as large as the quantity B above. Accordingly this value H must
satisfy:

Nm X
H > H,, where Hy := log, m + [log2 (ma) +3-‘ .

In case a value too close to Hp is adopted (say 0 < H — Hy < 3), then the effect

of hashing collisions must be compensated for. This is achieved by inverting the

function that gives the expected value of the number of collisions in a hash table

(see [3, 15] for an analogous discussion). The estimator is then to be changed into
o QM 1 5~ (@)

(No detectable degradation of performance results from the last modification of the

estimator function, and it can safely be used in all cases.)

LOGLOG COUNTING OF LARGE CARDINALITIES 13

1000

800 1

600 1

4001

200

0,000 50,000 60,000
FIGURE 5. The frequency of estimates returned by the Super-
LocLog algorithm with m = 256 corresponding to a standard
error of 6.5%: n = 50,000 (from 50,000 runs on random data).

Risk analysis. For the pure LOGLOG algorithm, the estimate is an empirical
mean of random variables that are approximately identically distributed (up to sta-
tistical fluctuations in bucket sizes). From there, it can be proved that the quantity
% > j M is numerically closely approximated by a Gaussian. Consequently, the
estimate returned is very roughly Gaussian: at any rate, it has exponentially de-
caying tails. (In principle, a full analysis would be feasible.) A similar property is
expected for the super-LOGLOG algorithm since it is based on the same principles.
This nearly Gaussian character is confirmed by Figure 5. As a consequence, we
obtain the following pragmatic conclusion:

Fact 2. Let o := %. The estimate is within o, 20, and 30 of the

ezact value of the cardinality n in respectively 65%, 95%, and 99%
of the cases.

(Another topic that we don’t have space to discuss here is the correction of small-n
nonlinearities, which is feasible.)

6. CONCLUSIONS

That super-LoGLOG performs quite well in practice is confirmed by the following

data from simulations:
|k=logom]| 4 [5 [6 | 7[8]9]10]11]12]

o* 295|198 [13.8 (94 |6.5|4.5(3.1|22]|1.5
1.05//m [26.3]18.6(13.1]93|65|4.6(3.3|23|16
Random 22 16 11 8 | 6 | 4|3 [23] 2
Kinglear | 82 | 1.6 | 2.1 {39]29|12|03]|1.7| —

ShAIl 29 [139| 44 (09(94|4.1|3.0(0.8|0.6

Pi 67 | 28 | 9.7 [86|2.8|51(19|1.2]|0.7

Note. o* refers to standard error as estimated from extensive simulations, to be compared to

the empirical formula 1.05//m. The next lines display the absolute value of the relative error
measured. Random refers to averages over 10,000 runs with n = 20, 000; the other data are single
runs: Pi is formed of 2 - 107 records that are consecutive 10-digit slices of the first 200 million
decimals of 7; ShAIl is the whole of Shakespeare’s works. KinglLear is what its name says.

As we have strived to demonstrate, the LOGLOG algorithm in its optimized ver-
sion performs quite well. The following table (grossly) summarizes the accuracy
(measured by standard error ¢) in relation to the storage used for the major meth-
ods known. Note that different algorithms operate with different memory units.

14 MARIANNE DURAND AND PHILIPPE FLAJOLET

Algorithm Std. Err. (o) Memory units n=10% o =0.02
Adaptive Sampling 1.20/v/m | Records (>24-bit words) 10.8 kbytes
Prob. Counting 0.78/\/m Words (24-32 bits) 6.0 kbytes
Multires. Bitmap ~4.4/v/m Bits 4.8 kbytes
LocgLoc 1.30/v/m “Small bytes” (5 bits) 2.1 kbytes
Super-LoGLOG 1.05/v/m “Small bytes” (5 bits) 1.7 kbytes

The last column is a rough indication of the storage requirement for an accuracy of 2% and a file
of cardinality 108. (The formula for Multiresolution Bitmap is a crude extrapolation based on
data of [3].)

Distributing or parallelizing the algorithm is trivial: it suffices to have differ-
ent processors (sharing the same hash function) operate on different slices of the
data and then “max—merge” their tables of registers. Optimal speed-up is clearly
attained and interprocess communication is limited to just a few kilobytes. Require-
ments for an embedded hardware design are absolutely minimal as only addressing,
register comparisons, and integer addition are needed.

Acknowledgements. This work has been partly supported by the European Union under
the Future and Emerging Technologies programme of the Fifth Framework, ALCOM-FT
Project IST-1999-14186. The authors are grateful to Cristian Estan and George Varghese
for very liberally sharing ideas and preliminary versions of their works.

REFERENCES

[1] ALoN, N., MATIAS, Y., AND SZEGEDY, M. The space complexity of approximating the fre-
quency moments. Journal of Computer and System Sciences 58 (1999), 137-147.

[2] EsTAN, C., AND VARGHESE, G. New directions in traffic measurement and accounting. In
Proceedings of SIGCOMM 2002 (2002), ACM Press. (Also: UCSD technical report CS2002-
0699, February, 2002; available electronically.).

[3] EsTAN, C., VARGHESE, G., AND FIsK, M. Bitmap algorithms for counting active flows on high
speed links. Technical Report CS2003-0738, UCSD, Mar. 2003.

[4] FLAJOLET, P. Approximate counting: A detailed analysis. BIT 25 (1985), 113-134.

[5] FLAJOLET, P. On adaptive sampling. Computing 34 (1990), 391-400.

[6] FLAJOLET, P., GOURDON, X., AND DuMAS, P. Mellin transforms and asymptotics : Harmonic
sums. Theoretical Computer Science 144, 1-2 (1995), 3-58.

[7] FLaJoLET, P., AND MARTIN, G. N. Probabilistic counting algorithms for data base applica-
tions. Journal of Computer and System Sciences 31, 2 (1985), 182-209.

[8] GiBBONS, P. B., POOSALA, V., ACHARYA, S., BARTAL, Y., MATIAS, Y., MUTHUKRISHNAN,
S., RaMAaswaMY, S.; AND SUEL, T. AQUA: System and techniques for approximate query
answering. Tech. report, Bell Laboratories, Murray Hill, New Jersey, Feb. 1998.

[9] JACQUET, P., AND SzPANKOWSKI, W. Analytical depoissonization and its applications. The-
oretical Computer Science 201, 1-2 (1998).

[10] KNuTH, D. E. The Art of Computer Programming, 2nd ed., vol. 3: Sorting and Searching.
Addison-Wesley, 1998.

[11] Morris, R. Counting large numbers of events in small registers. Communications of the
ACM 21 (1978), 840-842.

[12] MoTwaN1, R., AND RAGHAVAN, P. Randomized Algorithms. Cambridge University Press,
1995.

[13] PRODINGER, H. Combinatorics of geometrically distributed random variables: Left-to-right
maxima. Discrete Mathematics 153 (1996), 253-270.

[14] SzpANKOWSKI, W. Awerage-Case Analysis of Algorithms on Sequences. John Wiley, New
York, 2001.

[15] WHANG, K.-Y., ZANDEN, B. T. V., AND TAYLOR, H. M. A linear-time probabilistic counting
algorithm for database applications. TODS 15, 2 (1990), 208-229.

Address: ALGORITHMS PROJECT, INRIA-ROCQUENCOURT, F78153 LE CHESNAY (FRANCE)

