
The Analysis of Hybrid Trie Structures*

Julien Clkment’-2 Philippe Flajolet’ Brigitte Vallke2

’ Algorithms Project, INRIA-Rocquencourt, F-78150 Le Chesnay (France)

’ GREYC, UniversitC de Caen, F-14032 Caen (France)

Abstract

This paper provides a detailed analysis of various implemen-
tations of digital tries, including the “ternary search tries”
of Bentley and Sedgewick. The methods employed combine
symbolic uses of generating functions, Poisson models, and
MeIlin transforms. Theoretical results are matched against
real-life data and justify the claim that ternary search tries
are a highly efficient dynamic dictionary structure for strings
and textual data.

Introduction

Digital trees, usually called tries, are both an abstract
structure and a data structure that can be superimposed
on a set of strings over some fixed alphabet. As
an abstract structure, they are based on a splitting
according to letters encountered in strings: if S is a set
of strings, and A = {ej}J=i is the alphabet, then the
trie associated to S is defined recursively by the rule:

trie(S) = (trie(S \ al), . . . , trie(S \ a,)),

where S \ cx means the subset of S consisting of strings
that start with o, stripped of their initial letter cr;
recursion is halted as soon as S contains less than 2
elements. The advantage of the trie is that it only
maintains the minimal prefix set of characters that is
necessary to distinguish all the elements of S.

Clearly the tree trie(S) supports the search for any
string w in the set S by following an access path dictated
by the successive letters of w. By similar means, the
trie implements insertions and deletions, so that it is a
fully dynamic dictionary data type. In addition, tries
efficiently support set-theoretic operations like union
and intersection [17], as well as partial match queries or
interval search [7, 141, and suitable adaptations make
them a method of choice for complex text processing
tasks 19, Ch. 71. These various applications justify
considering the trie structure as one of the central

‘work supported in part by the Long Term Research Project

ALCOM-IT (# 20244) of the European Union.

general-purpose data structures of computer science [9,
11, 13, 151.

When it comes to implementation, several options
are possible depending on the decision structure chosen
to guide descent in subtrees. Three major choices
present themselves.

- The “array-trie” uses an array of pointers to ac-
cess subtrees directly; this solution is adequate only
when the cardinality of the alphabet is small (typ-
ically for binary strings) since otherwise it creates
a large number of null pointers.

- The “list-trie” structure remedies the high storage
cost of array-tries by linking sister subtrees at the
expense of replacing direct array access by a linked
list traversal.

- The “bst-trie” uses binary search trees (bst) as
subtree access method, with the goal of combining
advantages of array-tries in terms of time cost, and
list-tries in terms of storage cost.

This paper is devoted to the analysis of such hy-
brid trie structures, especially the list-trie and the bst-
trie, many properties of basic (array) tries being already
known [lo, 11, 13, 161. Our motivation comes in fact
from a recent paper of Bentley and Sedgewick [2] who,
following early ideas of Clampett [4], developed an el-
egant implementation of bst-tries, under the name of
ternary search trie, or tst for short. The basic idea
of [2, 4] is to represent the bst-trie as a ternary tree
where search on letters is conducted like in a standard
binary search tree over the alphabet set A, while trie de-
scent is performed by following an escape pointer when-
ever equality of letters of detected. In this way, the
code is especially compact and, in simulations, the im-
plementation constants appear to be particularly small.
Bentley and Sedgewick report that, in practical situa-
tions, their data structure can be more efficient than
hashing while offering considerably wider functionality.
Our goal, as analysts, is to examine this claim and pre-
cisely quantify what goes on.

.

531

532

Figure 1: The basic trie representation
(left) and the ternary search trie representa-
tion (right) of the sequence of strings S =
(cbababc, cabbba, cccac, cacb, bbbc, cbaaca, ccacc)
over the alphabet A = {a, b, c}.

More precisely, all our analytical models assume
that n infinitely long keys are drawn independently from
a common source, the universe of keys being the set
U=d". The assumption of independence, which im-
plies “random order”, is the crucial one. Though not
universally valid, it is satisfied in many situations (e.g.,
successive words in a text like this paper are very weakly
alphabetically correlated!) while providing a convenient
basis for general comparisons between alternative data
structures. (The assumption of infinitely long keys is
only a technical convenience, as it is known to approxi-
mate reality quite well for reasonably large data bases of
strings [17].) W e consider a variety of quite general and
fairly realistic sources for textual data, corresponding
to probabilistic models on the universe U = ,4” from
which individual keys are drawn. They include simple
sources, the memoryless source with independent letters
in strings, sources with a Markovian dependency be-
tween letters (the analysis focusses on these two cases),
and even more general sources, like continued fraction

representations of real numbers where the dependency
between digits is no longer of a local nature.

Our main results are as follows. For both the
memoryless source (m) and the Markov source (M), and
either the list-trie or the ternary search trie, there exist
computable constants KS, dependent upon the source
S = m, M, such that the e:xpected cost (measured by
the number of letter comparisons) of a random search
in a tree built on n keys is of the form,

(O-1) KS log n + O(1).

For instance, the ternary search trie applied to data
provided by a Markov source (M) with transition prob-
abilities pj 1 i (the probability of letter j occuring, given
that the preceding letter is i) has

KM
?rkPkliPklj 2cc

k i<j PSli+“‘+Pklj

HM = -~*kpjlkl"gPjIk~

where {zk} is the stationary probability of the chain,
and HM is none other than the entropy of the Markov
chain.

In summary, we establish rigorously here that,
on average, hybrid trie structures have logarithmic
access costs under a variety of uses and we characterize
precisely the dependence of implied constants on basic
properties of the source model.

1 Search trees

The ternary search trie (tst) is, as we saw, a trie
structure whose nodes are binary search trees (bst) over
the character alphabet A = {ai, . . . , a,}, augmented
with “escape links” for trie descent, in case of equality.
Thus, the analysis of tst’s requires first a dedicated
analysis of bst’s.

A word w E d* is a sequence of letters regarded
here as a sequence of insertions of letters (with possibly
multiple occurrences) into a binary search tree, denoted
bst(w), where letters of w are stored without repetition
in nodes of the bst. The natural order al < ... < a,.
is adopted throughout the paper. The independence
assumption of our tst analysis model implies that one
should endow d* with a probabilistic model where
letters are drawn independently according to some
(possibly nonuniform) probability distribution {pj};=i.

Given such a word w, and a letter a,, we define
the search cosi c,[w] as the number of edges on the
branch corresponding to a, in bst(w). (Equivalently, if.
a, occurs in w, c,[w] is minus one plus the number of

533

nodes on the branch of a,, while if a, does not occur,
then c,[w] equals the number of nodes on that same
branch.) The cumulated search cost d,[w] is defined as
1~1~. c,[w] and it represents the total cost for searching
all the occurrences of a, in the tree bst(w).

Our treatment is based on generating functions and
it allows in fact for the simultaneous treatment of three
probabilistic models:

- the multiset model, where w is obtained
by a random permutation of the multiset
{a;‘,aya,... ,aFr);

- the Bernoulli model based on a fixed probability
distribution {pj}5=1 on letters of A and a fixed
length of words, n;

bst(w+), where wco means w restricted to elements
of index smaller than (Y; a dual search of the minimum
along the leftmost branch of bst(w+). Each one-sided
search is described by a regular expression and corre-
sponding multivariate rational functions. The combina-
tion is achieved by a shuffle product that involves formal
Laplace transforms.

(i) Ezlrema analysis. The first problem to be solved
is thus the analysis of length of the rightmost branch in a
tree built on random words, or equivalently the analysis
of left-to-right maxima (also called “records”). Given
the alphabet A, the regular expression decomposition

d*=fJ({c}+aj(al+az+-*-aj)*)
j=l

- the Poisson model P(.z, {pj}), which is similar but
where the length iV of w is itself a random variable

expresses precisely all the possible decompositions

that obeys a Poisson law of parameter z, Pr{N =
of words by sets of left-to-right maxima. Accord-

n) = esz$.
ingly, the multivariate generating function, with x =
X1,X2,.-- ,Xr,

The multiset model and the Bernoulli model have
been considered earlier by Burge [3] and by Allen and
Munro [l]. We re-derive and extend their results. In
particular, consideration of the Poisson model is needed
for the analysis of hybrid tries in the following sections.

THEOREM 1.1. (SEARCH COST IN BST'S) The mean
search cost and mean cumulated cost corresponding 20
(Y in a binary search tree, under Ihe multiset, Remoulli,
and Poisson model, are given by

Multiset: E[cJ = c nj
j#a Nli*al

E[&] = c n,nj = n,E[c,]
jfa Nli#Ql

Bernoulli:

E[da] = c +
j#a 4Val

[qj,a] + (1 - %,# - ‘I

with N[,,,l = C.

I

nj, qU,“l = C. pj, and the index j
ranges from min u, v) lo max(u, v 3 .

PROOF. Our approach here relies on a symbolic descrip-
tion of parameters by generating functions (gf’s) and is,
perhaps, of independent interest. We proceed by stages
and describe the search for a letter a, in bst(w) by: a
search of the maximum along the rightmost branch of

(1.2)
Nnax(~,u,x) = fi 1+ %UXj

j=l > l-%(Zl+'**+Zj) '

is such that the coefficient of [z”u~x~’ . . .x:-l equals
the number of words of length n that have k maxima
and nj occurrences of letter aj. This property is based
on the systematic correspondence between operations
on formal languages and operators on gf, for instance
(l-g)-1 = 1+g+g2+. . * generates arbitrary repetitions
of elements enumerated by g, which corresponds to the
star operation on languages. Dually, the multivariate gf
for minima is

(1.3) Nmin(%,uyX) = fi l+
%UXj

j=l > l-%(Xj+"*+X,) .

(ii) Search costs. Consider next the search cost of
some fixed letter cr. The formal sum

c, := c uc~[sl *w
WEA*

when interpreted as a multivariate generating function
(reading %xj for the letter aj) is such that the coeffi-
cient [z”u~~JII~ . . .a$~] represents the number of words
w with length n, nj occurrences of letter j, and search
cost equal to k. Now one has the shuffle (‘m’) decom-
ppsition [5, 121,

(1.4)
(d\{cr})*=(al+a..+a,-1)*m(a,+l+e..+a,)*,

534

meaning that each word decomposes into into subwords
< Q and > Q, shuffled in all possible ways.

It is a known and easy result that a shuffle of
languages over disjoint alphabets corresponds to an
operation on generating functions (also denoted by ‘m’)
that is defined by

since the binomial in the convolution enumerates all
possible shuffles. Equipped with this operation, we have
(X”..V =xu,... 9X”),

(1.5)

Ca(z, u,x) = (N max I,u,Xl..a-l)UINmin(z,u,xo+l..r)) (

. 1+
(

%Xa

> l-t(z~+*~.+z,) ’

where the last factor takes into account trailing se-
quences that may contain a.

(iii) Ezpplicil forms. Eq. (1.5) condenses all the in-
formation on costs, including the full distribution. The
gf of average costs is as usual obtained by differentiating
with respect to u and setting u = 1. The rest of the com-
putation is carried out by means of Laplace transforms,
partial fraction expansions, and logarithmic derivatives.
The formal Laplace transform C is defined by

and satisfies

The result for the multiset model then derives from
extracting coefficients in rational multivariate gf’s. For
the Bernoulli model, one sets zj +-+ pj and extracts the
coefficient [f”] from the univariate rational gf. For the
Poisson model, the following general principle is used.
If fn is the expectation under the Bernoulli model of
index n, then the corresponding expectation under the
Poisson model is

(1.6) cfnchz$ =e-*Cc-l cf,,z? .
n 1 1 n

Computations (details omitted) complete the proof of
Theorem 1.1. Cl

With the generating function framework, we have
full access to the distribution of extrema and search
costs under three models. Variances in particular have
explicit expressions of a forum similar to the means. Our
results also specialize easily to the random permutation
model (corresponding to each nj = 1 in the multiset
model) where one has Gaussian limit laws for records
and search costs, as found earlier by Goncharov, Lynch,
and Louchard (see [13]). From our gf expressions and
continuity theorems, it may be shown that the Gaussian
laws survive for a variety of letter distributions, like
generalized Zipf laws.

2 Ternary search tries

In this section, we complete the analysis of ternary
search tries (tst’s) built on a random n-tuple S =
(Sl,.. . , s,,) of infinite strings from the universe of
keys U = A”. The set U is itself endowed with a
probability measure, the source model, and we center
the discussion on memoryless and Markov sources,
though more general “dynamical” models are amenable
to our approach. The two main results are Theorems 2.1
and 2.2 below that give an exact analysis and an
asymptotic analysis of search costs.

More precisely, we consider the two parameters that
characterize a positive search and a random search (or
equivalently, a negative search, since a random search
fails with probability 1). In the course of a search
in a tst, different kinds of links are followed: the
“comparison pointers” (with outcome ‘<’ or ‘>‘) and
the “descent pointers” that correspond to an escape to
the next level upon equality of characters. The analysis
of the cost induced by equality pointers is the same
as that of standard tries and essentially known. So,
we concentrate here on the comparison cost induced
by the bst access structures present at each node that
predominates. Path length that describes the total cost
of all positive searches grows like nlogn and the cost
of a random (negative) search grows like logn. The
purpose of this section is precisely to characterize the
constants involved.

Two complementary methods are used. The exact
analysis is performed through an intermediate Poisson

It then suffices to use the obvious correspondences and
model, where the number N of strings is itself a random

relations
variable that obeys a Poisson law of parameter z. The
asymptotic analysis further relies on Mellin transforms

C[eaZ] = A, C[ze’*] = (1 ’
and Dirichlet series associated to the source model.

- a%)2 ’
Exact analysis. We define the (comparison) path

1 1 1
-m---z

length L(t) f o a tst t as the sum of the distances

1 - a.2 1 - br 1 - (a + b).z. of all external nodes to the root of the tree, wherr

535

distance is measured in the number of comparison
pointers; see Fig. 1. Similarly, for .s a string, we define
the (comparison) search cost R(t, s) as the number
of comparison pointers followed when accessing the
string s in the tst t. The comparison costs decompose
according to the underlying trie structure,

w =
(2.7)

iT(Root(t)) + c L(tj)
i=l

R(Ui*S, t) = ri(Root(t)) + R(sy ti),

where ti denotes the subtree oft relative to the letter ai.
The terms !(Root(t)) and ri(Root(t)) are so-called toll
functions and they represent respectively the traversal
cost (in number of links) and the cost of searching for
the letter ai in the bst present at the root of 1.

Consider the Poisson model of rate z. It is a well
known property that Poisson flows in an interval lead
to (independent) Poisson flows in (disjoint) subintervals.
Thus, the number Nh of strings that have a given prefix
h obeys a Poisson law of parameter phf, where ph is
the probability that a random element of A” starts
with the string h, a quantity that depends of course on
the source. Let pilh be the probability that a random
string conditioned to start with the prefix h has its
letter following h that equals ai. Then, the probabilistic
behaviour of the tst that corresponds to the “place”
associated to h is described by a Poisson model of rate
zph with individual letter probabilities {pi!,,}. Then,
Theorem 1 applies locally to this place: it suffices to
replace in the statement the Poisson model P(z, {pi})
(rate z and letter probabilities {pi}) by the Poisson
model P(zP~, {pil/a)). Denoting by E[&, VZPA, {pq,))]
and E[ca, P(zph, {pilh})] the expected values of d, and
c* in this local Poisson model, one has from Theorem 1:

w-9
ww1 = 1 E[da,P(m, {pi~d)l

a=1

E[ra(h)I = E[%,P(ZPh, {Pilh))l.

What remains to be done is to relate the quantities
of (2.8) to the expectations of the global parameters R
and L. The recursion formula (2.7) unwinds, and the
expectations under a Poisson model of rate z are found
to satisfy

EZPI = c ww1
heA’ r

&[R] = c Ph c &,h Wa(hl.

hEA’ a=1

Taking the individual expectations from (2.8), we then

get
P-9)

E,[L] = 2 hg. g = [zPhfi,j] - 1 + eBzph+*jl] 9

where Ph.[i,j] = cj,+ ph.6. (To Simplify notations, we
identify a letter with its index and use has been made
of the relations ph palh = ph.a.)

The transition from the Poisson model to a model
with the cardinality n of the data set being fixed is then
simply achieved by the formal dictionary

e -a’ H (1- a)“, zeSaz H n(l- a)“-‘,

in accordance with the principles of the previous section;
see (1.6).

THEOREM 2.1. (EXACT COSTS) The (comparison)
path length and the (comparison) cost of a random
search in a ternary search trie made of n keys have

expectations given by (Ph.[i,j] = cj,=i ph.k)

[nPh.[i,j] - 1 + (1 - Ph.]i,j])“] >

[l - (1 - Ph.[i,j])n] *

It is a noteworthy feature that this theorem makes
absolutely no assumption on the source model and is
solely a consequence of independence. Quantities like
ph admit more or less complicated expressions in each
particular case. For the memoryless model, one has
p,, = py’ . . .py’, where mi is the number of letters i
in h, so that the sum over all h is an r-fold sum
in disguise; for Markov models, one has to resort to
matrix forms. Nonetheless, these formulae together
with their Poisson counterparts constitute a useful
input to asymptotic analysis where a phenomenon of
“asymptotic simplification” takes place (as usual!).

Asymptotic analysis. The expectations in Theo-
rem 2.1 and Equation (2.9) belong to the paradigm of
harmonic sums [6] that are general sums of the form

F(z) = Ck@ Xk f (pk z), Asymptotic analysis of such
sums is classically done by the Mellin transform [6], that
associates to a real function g(r) the transform

g*(s) = drn g(x)x’-’ dz.

The Mellin transform F* of the general harmonic sum
5 factorizes* as F*(s) = ham, where h(s) =

LeK &pa is the associated Dirichlet series. It is

536

known that the asymptotic behaviour of F(z) is driven
by the singularities of the Mellin transform F*(s), hence
eventually by singularities of the Dirichlet series A(s).

The Poisson expectations in (2.9) prove more basic,
and we start with them. Introduce the Dirichlet series

A(s) = 2 c c Ph.i y.
hEA* i<j %i31

The Mellin transforms of the expectations E,[L] and
E,[R] are, by the harmonic sum property, -A(s)
-A(s - l)I’(s), with definition domains (-2, -1) and
(-1,O). Singularities are needed to complete the anal-
ysis.

Two kinds of sources are considered here: memo-
ryless sources and sources based upon Markov chains.
A memoryless source (sometimes called Bernoulli) pro-
duces infinite strings where a letter ei has probability
pi to appear independently of past history. A Markov
source produces letters with an initial distribution and
with transition probabilities pjli, the probability of pro-
ducing j given i. (Only first-order Markov models are
considered here for notational simplicity.) In both cases,
the Dirichlet series A(s) has an explicit expression. For
the memoryless source, one has

For the Markovian source, the first character distribu-
tion being {&}, one has a matrix form,

Ns) = (hg*ph-*) (a-*) Standard tries under a Markov model have been
analysed by Jacquet and Szpankowski [lo] who addi-
tionally obtained limit distributions. The analysis con-

l (Qgk-).

ducted here provides an extension of their logarithmic
=

l-(pl-‘+-~~+p,-‘)
cost estimates to tst’s. It even applies to non-Markovian
sources, for instance continued fraction representations
of real numbers (where the alphabet N is now infinite),
and more generally so-called “dynamical sources” [18].
Standard (array) tries have been analysed in the con-

A(s) = ‘b, (I - q-l g, tinued fraction context in [S]. From [8, 181 and methods
of this paper, ternary search tries applied to continued
fraction representations still lead to logarithmic costs,
for instance,

(2.10)

where & = (P?;-~)I<~<~, P, = (pjli-‘) is the element-
wise power of order--6 of the transition matrix, and b,
is the vector whose the kth component is

and on the property _that dominant poles of i(s) are
exactly the same for A(s) and A(s).

THEOREM 2.2. (ASYMPTOTIC COSTS) The (campari-
son) external path length path and random search for a
ternary search tree built on n keys produced by a source
S, either memoryless (m) or Markovian (M), have av-
erages that satisfy

E&l = $cs *nlogn-l-O(n)

&JR] = &cs * logn + O(l),

where the entropy HS and the quantity CS are source-
dependent constants

Hm = C -Pi log Pi
i

HM = crk ~-Pjlklogpjlk

c,=2h

j
PiPj

i<j pi + ’ * * + Pj

cM=2crkc
PilkPjlk

k i<j Piik + . * ’ •i- Pjlk.

Pilkpjlk

(Pill: + * * * + Pjlk)‘+” ’

In both case, the function A has a simple pole at s = -1
and the residue turns out to be related to the entropy of
the source, as is apparent in the memoryless situation.

For the analysis with a fixed data set cardinality n,
we appeal to a technique a “Dirichlet depoissonization” .
It is baaed on the observation that the averages in
Theorem 2.1 are also harmonic sums, but with a more
complicated Dirichlet series,

~(‘) = 2 hi* ~ ~ (log 1 - oh., j,> -a ’

En[L] = &F n 1Ogn + O(n)
r -8

I-CF = $; + c 1
k>2 k2 - ’

The proof is based on the use of transfer operators 0,
that vastly generalize the matrix forms like (2.10) that
are associated with Markov chains.

3 Comparative studies

As detailed in the introduction, tries exist in three
major versions: the array-trie (the standard version),
the list-trie, and the bst-trie (the ternary search trie
implementation). These should be compared in terms

537

Pointers

array-trie (standard) list-trie bst-trie (tst)

Al
2 3

KS
-n
Hs

-n
Hs

Path length
1

-nlogn %logn CS

Hs Hs
-nlogn
Hs

Search $logn G
j.glogn $logn

Figure 2: A comparative table of three trie implementations under three cost measures. The corresponding
constants are given in Theorem 2.2 for C’s = C,, CM and Eq. (3.12) for C$ = cm, C$.

of time and space complexity, that is in terms of storage
utilization and access cost. Theorems 2.1 and 2.2
quantify precisely the access cost for tst’s. The reference
parameters are the number of internal nodes IO, the
path length Lo, and the search cost R” of standard
array-tries, whose analysis stems from Knuth’s books,

(3.11)

&[I01 ’ e-n
Hf

E,[LO] N -nlogn

En [RO]
Hf

- dogn-

These estimates are valid for both the memoryless (m)
and the Markov (M) source [lo, 11, 131 , Hs is the
source entropy, and the approximation sign ‘a’ in size
estimates conceals oscillations of a minute amplitude
arising from complex poles of Dirichlet series.

The exact and asymptotic methods of Section 2 ap-
ply to list-tries, with the simpler analysis of linked lists
being substituted for the analysis of bst’s in Section 1.
The (comparison) path length L* and the search cost R?
of list-tries are found to satisfy

(3.12) \ I

En[L*] N gn logn, E#? - & s logn

G = C(i - l)Pi,
i k i

Thus, all three structures have logarithmic access costs,
require linear space, albeit with different constants.
Globally, the situation for all three data structures, our
two main models, and the three complexity measures is
summarized by the table of Fig. 2.

It is interesting to note that some of these properties
are dependent upon a finite alphabet cardinality as the
continued fraction model induces an average path length
of O(n(log n)2).

Ezperimental data. In order to assess the relevance
of these analyses, we have conducted a simulation cam-
paign on large real textual data. When we started,
we were hopeful that the data structure alternatives
could behave qualititatively in a way compatible with
the theoretical models, but did not expect quantitatively
much predictive power given the simplicity of our mod-
els (infinite strings, first-order Markov chains, asymp-
totic regime). The real situation turned out to be a
little better.

As reference data, we have taken Herman Melville’s
novel Moby Dick whose complete text is available on
the World Wide Web. The whole book comprises
1,295,OOO characters and 217,000 words -contiguous
alphabetical character strings- whose lengths range
between 1 (the word ‘a’) and 20 (‘uninterpcnetratingly’).
Various experiments have been conducted, like splitting
the text into halves, filtering out short words (of length
5 5, say), etc. There are altogether 17,448 distinct
words in the whole novel. One can then easily build
a Bernoulli model and a Markov model on the corpus.
The theoretical estimates for the entropy and the C
constants are then determined by Theorems 2.1 and 2.2:

H, = 2.896, HM = 2.271

Cm = 10.649, c;*, = 10.447

c,,, = 3.298, CM = 2.2%.

(As anticipated, the Markov model leads to a lower
entropy estimate and the values found here are in fair
agreement with estimates based on other texts [19].)
For search costs R”, I??, R, in standard, list, and bst
tries containing n data items, this yields respectively

Moby Dick data. The evolution of insertion costs [left: array-trie, middle: list-trie, right: bst-trie], or
equivalently negative search costs, shows an unclear tendency to increase as the number of data items n increases,
and there is a fairly large variability of numerical data,

The presentation obtained by plotting against logn the costs averaged over successive batches of 10 insertions
exhibits more clearly the logarithmic trends,

40 12-

1 0.. 35 1 0..
& 30.

25 8.

6 20 6.
41 15

/’ .--;

,“’ 4- 10 \. .-.
2 /

2 4

A/ .J

6 a 1’0 2 4 6 8 1’0 2 4 6 8 1’0

and leads to empirical formula for the search costs in array-tries, list-tries, and bst-tries:

E,[P] = 0.8logn, E,[R*] RS 3.0logn, E,[R] M l.Ologn.

Finally, the evolution of path length divided by n log n, as insertions proceeds [bottom: standard trie, middle:
bst-tries, top: list-tries], provides another view of the data. Here, the curves go by pairs corresponding to the two
halves of the corpus.

^.....~...~~_ ___-
.- .-_... __

_.-.... -

Figure 3: A display of the evolution of search costs and path lengths as a function of the number of strings
inserted in standard and hybrid trie structures.

the predictions

memoryless source (m) :

0.345logn, 3.677logn, 1.138logn

Markov source (M) :

0.440logn, 4.600logn, l.OlOlogn.

We describe in some detail one experiment; see
Fig. 3 for graphics. Taking the first half of the text
and retaining words of length 6 or more, we obtain a
collection Pi of n = 7437 different words. The number
of internal trie nodes is then 8444, and the path lengths
of the standard array-trie (LO), list-trie (L*), and tst (L)
appear to be, respectively, Lo = 50894, L* = 178688,
L = 59715. A fit of the path length data and the
individual insertion costs suggests approximate formulae
(Fig. 3)

E, [RO] NN 0.8 log n

E,,[R*] M 3.0logn,

En[R] R l.Ologn.

for the search costs in the three structures.
The theoretical predictions turn out to be optimistic

by a factor of about 2 for trie size (number of internal
nodes) and trie path length, a fact to be probably as-
signed to the large number of closely resembling words
in a dictionary based on raw written forms instead of
“normal forms” (e.g., here, aboriginal, aboriginally, abo-

riginalness). The predictions for list-tries are pessimistic
by 20% (memoryless model) or 50% (Markov model).
The predictions for bst-tries turn out to be quite close
to reality (especially under the Markov model), a happy
event.

Simplifying the discussion (Fig. 2 and 3), a concise
practical conclusion is as follows:

Ternary search tries are an efficient data struc-
ture from the information theoretic point of
view since a search costs typically about logn
comparisons on real-life textual data. List-
tries require about 3 times as many compar-
isons as ternary search tries that implement
bst-tries. For an alphabet of cardinality 26,
the storage cost of ternary search tries is about
9 times smaller than standard array-tries.

This justifies considering ternary search tries as a
method of choice for managing textual data. As ex-
pressed by Bentley and Sedgewick [2], “Ternary search
tries combine the best of two worlds: the low overhead
of binary search trees (in terms of space and running
time) and the character-based eficiency of tries”.

539

References

PI

PI

[31

[41

[51

PI

VI

PI

PI

PO1

IllI

WI

WI

P41

I151

WI

P71

P81

WI

ALLEN, B., AND MUNRO, I. Self-organizing binary
search trees. Journal of the ACM 25, 4 (Oct. 1978),
526-535.
BENTLEY, J., AND SEDGEWICK, R. Fast algorithms
for sorting and searching strings. In Eighth An-
nual ACM-SIAM Symposium on Discrete Algorithms
(1997), SIAM Press.
BURGE, W. H. An analysis of binary search trees
formed from sequences of nondistinct keys. JACM 23,
3 (July 1976), 451-454.
CLAMPETT, H. A. Randomized binary searching with
tree structures. Communications of the ACM 7, 3
(Mar. 1964), 163-165.
FLAJOLET, P., GARDY, D., AND THIMONIER, L. Birth-
day paradox, coupon collectors, caching algorithms,
and self-organizing search. Discrete Applied Mathe-
matics 39 (1992), 207-229.
FLAJOLET, P., GOURDON, X., AND DUMAS, P. MeIIin
transforms and asymptotics: Harmonic sums. Theoret-
ical Computer Science 144, l-2 (June 1995), 3-58.
FLAJOLET, P., AND PUECH, C. Partial match retrieval
of multidimensional data. Journal of the ACM 33, 2
(1986), 371407.
FLAJOLET, P., AND VALLEE, B. Continued fraction
algorithms, functional operators, and structure con-
stants. Research Report 2931, Institut National de
Recherche en Informatique et en Automatique, July
1996. 33 pages. Invited lecture at the 7th Fibonacci
Conference, Graz, July 1996; to appear in Theoretical
Computer Science.
GONNET, G. H., AND BAEZA-YATES, R. Handbook
of Algorithms and Data Structures: in Pascal and C,
second ed. Addison-Wesley, 1991.
JACQUJZT, P., AM) SZPANKOWSKI, W. Analysis of dig-
ital tries with Markovian dependency. IEEE Transac-
tions on Information Theory 37, 5 (1991), 1470-1475.
KNUTH, D. E. The Art of Computer Programming,
vol. 3: Sorting and Searching. Addison-Wesley, 1973.
LOTHAIFIE, M. Combinatorics on Words, vol. 17
of Encyclopedia of Mathematics and its Applications.
Addison-Wesley, 1983.
MAHMOUD, H. Evolution of Random Search Trees.
John Wiley, New York, 1992.
RIVEST, R. L. Partial match retrieval algorithms.
SIAM Journal on Computing 5 (1976), 19-50.
SEDGEWICK, R. Algorithms, second ed. Addison-
Wesley, Reading, Mass., 1988.
SEDGEWICK, R., AND FLAJOLET, P. An Introduction
to the Analysis of Algorithms. Addison-Wesley Pub-
lishing Company, 1996.
TRABB PARDO, L. Set representation and set intersec-
tion. Tech. rep., Stanford University, 1978.
VALLEE, B. Dynamical systems and average-case
analysis of general tries. Preprint, 1997. 16~.
WELSH, D. Codes and cryptography. Oxford Science
Publications. Oxford University Press, 1988.

