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Abstract 

This paper provides a detailed analysis of various implemen- 
tations of digital tries, including the “ternary search tries” 
of Bentley and Sedgewick. The methods employed combine 
symbolic uses of generating functions, Poisson models, and 
MeIlin transforms. Theoretical results are matched against 
real-life data and justify the claim that ternary search tries 
are a highly efficient dynamic dictionary structure for strings 
and textual data. 

Introduction 

Digital trees, usually called tries, are both an abstract 
structure and a data structure that can be superimposed 
on a set of strings over some fixed alphabet. As 
an abstract structure, they are based on a splitting 
according to letters encountered in strings: if S is a set 
of strings, and A = {ej}J=i is the alphabet, then the 
trie associated to S is defined recursively by the rule: 

trie(S) = (trie(S \ al), . . . , trie(S \ a,)), 

where S \ cx means the subset of S consisting of strings 
that start with o, stripped of their initial letter cr; 
recursion is halted as soon as S contains less than 2 
elements. The advantage of the trie is that it only 
maintains the minimal prefix set of characters that is 
necessary to distinguish all the elements of S. 

Clearly the tree trie(S) supports the search for any 
string w in the set S by following an access path dictated 
by the successive letters of w. By similar means, the 
trie implements insertions and deletions, so that it is a 
fully dynamic dictionary data type. In addition, tries 
efficiently support set-theoretic operations like union 
and intersection [17], as well as partial match queries or 
interval search [7, 141, and suitable adaptations make 
them a method of choice for complex text processing 
tasks 19, Ch. 71. These various applications justify 
considering the trie structure as one of the central 
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general-purpose data structures of computer science [9, 
11, 13, 151. 

When it comes to implementation, several options 
are possible depending on the decision structure chosen 
to guide descent in subtrees. Three major choices 
present themselves. 

- The “array-trie” uses an array of pointers to ac- 
cess subtrees directly; this solution is adequate only 
when the cardinality of the alphabet is small (typ- 
ically for binary strings) since otherwise it creates 
a large number of null pointers. 

- The “list-trie” structure remedies the high storage 
cost of array-tries by linking sister subtrees at the 
expense of replacing direct array access by a linked 
list traversal. 

- The “bst-trie” uses binary search trees (bst) as 
subtree access method, with the goal of combining 
advantages of array-tries in terms of time cost, and 
list-tries in terms of storage cost. 

This paper is devoted to the analysis of such hy- 
brid trie structures, especially the list-trie and the bst- 
trie, many properties of basic (array) tries being already 
known [lo, 11, 13, 161. Our motivation comes in fact 
from a recent paper of Bentley and Sedgewick [2] who, 
following early ideas of Clampett [4], developed an el- 
egant implementation of bst-tries, under the name of 
ternary search trie, or tst for short. The basic idea 
of [2, 4] is to represent the bst-trie as a ternary tree 
where search on letters is conducted like in a standard 
binary search tree over the alphabet set A, while trie de- 
scent is performed by following an escape pointer when- 
ever equality of letters of detected. In this way, the 
code is especially compact and, in simulations, the im- 
plementation constants appear to be particularly small. 
Bentley and Sedgewick report that, in practical situa- 
tions, their data structure can be more efficient than 
hashing while offering considerably wider functionality. 
Our goal, as analysts, is to examine this claim and pre- 
cisely quantify what goes on. 

. 
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Figure 1: The basic trie representation 
(left) and the ternary search trie representa- 
tion (right) of the sequence of strings S = 
(cbababc, cabbba, cccac, cacb, bbbc, cbaaca, ccacc) 
over the alphabet A = {a, b, c}. 

More precisely, all our analytical models assume 
that n infinitely long keys are drawn independently from 
a common source, the universe of keys being the set 
U=d". The assumption of independence, which im- 
plies “random order”, is the crucial one. Though not 
universally valid, it is satisfied in many situations (e.g., 
successive words in a text like this paper are very weakly 
alphabetically correlated!) while providing a convenient 
basis for general comparisons between alternative data 
structures. (The assumption of infinitely long keys is 
only a technical convenience, as it is known to approxi- 
mate reality quite well for reasonably large data bases of 
strings [17].) W e consider a variety of quite general and 
fairly realistic sources for textual data, corresponding 
to probabilistic models on the universe U = ,4” from 
which individual keys are drawn. They include simple 
sources, the memoryless source with independent letters 
in strings, sources with a Markovian dependency be- 
tween letters (the analysis focusses on these two cases), 
and even more general sources, like continued fraction 

representations of real numbers where the dependency 
between digits is no longer of a local nature. 

Our main results are as follows. For both the 
memoryless source (m) and the Markov source (M), and 
either the list-trie or the ternary search trie, there exist 
computable constants KS, dependent upon the source 
S = m, M, such that the e:xpected cost (measured by 
the number of letter comparisons) of a random search 
in a tree built on n keys is of the form, 

(O-1) KS log n + O(1). 

For instance, the ternary search trie applied to data 
provided by a Markov source (M) with transition prob- 
abilities pj 1 i (the probability of letter j occuring, given 
that the preceding letter is i) has 

KM 
?rkPkliPklj 2cc 

k i<j PSli+“‘+Pklj 

HM = -~*kpjlkl"gPjIk~ 

where {zk} is the stationary probability of the chain, 
and HM is none other than the entropy of the Markov 
chain. 

In summary, we establish rigorously here that, 
on average, hybrid trie structures have logarithmic 
access costs under a variety of uses and we characterize 
precisely the dependence of implied constants on basic 
properties of the source model. 

1 Search trees 

The ternary search trie (tst) is, as we saw, a trie 
structure whose nodes are binary search trees (bst) over 
the character alphabet A = {ai, . . . , a,}, augmented 
with “escape links” for trie descent, in case of equality. 
Thus, the analysis of tst’s requires first a dedicated 
analysis of bst’s. 

A word w E d* is a sequence of letters regarded 
here as a sequence of insertions of letters (with possibly 
multiple occurrences) into a binary search tree, denoted 
bst(w), where letters of w are stored without repetition 
in nodes of the bst. The natural order al < ... < a,. 
is adopted throughout the paper. The independence 
assumption of our tst analysis model implies that one 
should endow d* with a probabilistic model where 
letters are drawn independently according to some 
(possibly nonuniform) probability distribution {pj};=i. 

Given such a word w, and a letter a,, we define 
the search cosi c,[w] as the number of edges on the 
branch corresponding to a, in bst(w). (Equivalently, if. 
a, occurs in w, c,[w] is minus one plus the number of 
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nodes on the branch of a,, while if a, does not occur, 
then c,[w] equals the number of nodes on that same 
branch.) The cumulated search cost d,[w] is defined as 
1~1~. c,[w] and it represents the total cost for searching 
all the occurrences of a, in the tree bst(w). 

Our treatment is based on generating functions and 
it allows in fact for the simultaneous treatment of three 
probabilistic models: 

- the multiset model, where w is obtained 
by a random permutation of the multiset 
{a;‘,aya,... ,aFr); 

- the Bernoulli model based on a fixed probability 
distribution {pj}5=1 on letters of A and a fixed 
length of words, n; 

bst(w+), where wco means w restricted to elements 
of index smaller than (Y; a dual search of the minimum 
along the leftmost branch of bst(w+). Each one-sided 
search is described by a regular expression and corre- 
sponding multivariate rational functions. The combina- 
tion is achieved by a shuffle product that involves formal 
Laplace transforms. 

(i) Ezlrema analysis. The first problem to be solved 
is thus the analysis of length of the rightmost branch in a 
tree built on random words, or equivalently the analysis 
of left-to-right maxima (also called “records”). Given 
the alphabet A, the regular expression decomposition 

d*=fJ({c}+aj(al+az+-*-aj)*) 
j=l 

- the Poisson model P(.z, {pj}), which is similar but 
where the length iV of w is itself a random variable 

expresses precisely all the possible decompositions 

that obeys a Poisson law of parameter z, Pr{N = 
of words by sets of left-to-right maxima. Accord- 

n) = esz$. 
ingly, the multivariate generating function, with x = 
X1,X2,.-- ,Xr, 

The multiset model and the Bernoulli model have 
been considered earlier by Burge [3] and by Allen and 
Munro [l]. We re-derive and extend their results. In 
particular, consideration of the Poisson model is needed 
for the analysis of hybrid tries in the following sections. 

THEOREM 1.1. (SEARCH COST IN BST'S) The mean 
search cost and mean cumulated cost corresponding 20 
(Y in a binary search tree, under Ihe multiset, Remoulli, 
and Poisson model, are given by 

Multiset: E[cJ = c nj 
j#a Nli*al 

E[&] = c n,nj = n,E[c,] 
jfa Nli#Ql 

Bernoulli: 

E[da] = c + 
j#a 4Val 

[qj,a] + (1 - %,# - ‘I 

with N[,,,l = C. 

I 

nj, qU,“l = C. pj, and the index j 
ranges from min u, v) lo max(u, v 3 . 

PROOF. Our approach here relies on a symbolic descrip- 
tion of parameters by generating functions (gf’s) and is, 
perhaps, of independent interest. We proceed by stages 
and describe the search for a letter a, in bst(w) by: a 
search of the maximum along the rightmost branch of 

(1.2) 
Nnax(~,u,x) = fi 1+ %UXj 

j=l > l-%(Zl+'**+Zj) ' 

is such that the coefficient of [z”u~x~’ . . .x:-l equals 
the number of words of length n that have k maxima 
and nj occurrences of letter aj. This property is based 
on the systematic correspondence between operations 
on formal languages and operators on gf, for instance 
(l-g)-1 = 1+g+g2+. . * generates arbitrary repetitions 
of elements enumerated by g, which corresponds to the 
star operation on languages. Dually, the multivariate gf 
for minima is 

(1.3) Nmin(%,uyX) = fi l+ 
%UXj 

j=l > l-%(Xj+"*+X,) . 

(ii) Search costs. Consider next the search cost of 
some fixed letter cr. The formal sum 

c, := c uc~[sl *w 
WEA* 

when interpreted as a multivariate generating function 
(reading %xj for the letter aj) is such that the coeffi- 
cient [z”u~~JII~ . . .a$~] represents the number of words 
w with length n, nj occurrences of letter j, and search 
cost equal to k. Now one has the shuffle (‘m’) decom- 
ppsition [5, 121, 

(1.4) 
(d\{cr})*=(al+a..+a,-1)*m(a,+l+e..+a,)*, 
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meaning that each word decomposes into into subwords 
< Q and > Q, shuffled in all possible ways. 

It is a known and easy result that a shuffle of 
languages over disjoint alphabets corresponds to an 
operation on generating functions (also denoted by ‘m’) 
that is defined by 

since the binomial in the convolution enumerates all 
possible shuffles. Equipped with this operation, we have 
(X”..V =xu,... 9X”), 

(1.5) 

Ca(z, u,x) = (N max I,u,Xl..a-l)UINmin(z,u,xo+l..r)) ( 

. 1+ 
( 

%Xa 

> l-t(z~+*~.+z,) ’ 

where the last factor takes into account trailing se- 
quences that may contain a. 

(iii) Ezpplicil forms. Eq. (1.5) condenses all the in- 
formation on costs, including the full distribution. The 
gf of average costs is as usual obtained by differentiating 
with respect to u and setting u = 1. The rest of the com- 
putation is carried out by means of Laplace transforms, 
partial fraction expansions, and logarithmic derivatives. 
The formal Laplace transform C is defined by 

and satisfies 

The result for the multiset model then derives from 
extracting coefficients in rational multivariate gf’s. For 
the Bernoulli model, one sets zj +-+ pj and extracts the 
coefficient [f”] from the univariate rational gf. For the 
Poisson model, the following general principle is used. 
If fn is the expectation under the Bernoulli model of 
index n, then the corresponding expectation under the 
Poisson model is 

(1.6) cfnchz$ =e-*Cc-l cf,,z? . 
n 1 1 n 

Computations (details omitted) complete the proof of 
Theorem 1.1. Cl 

With the generating function framework, we have 
full access to the distribution of extrema and search 
costs under three models. Variances in particular have 
explicit expressions of a forum similar to the means. Our 
results also specialize easily to the random permutation 
model (corresponding to each nj = 1 in the multiset 
model) where one has Gaussian limit laws for records 
and search costs, as found earlier by Goncharov, Lynch, 
and Louchard (see [13]). From our gf expressions and 
continuity theorems, it may be shown that the Gaussian 
laws survive for a variety of letter distributions, like 
generalized Zipf laws. 

2 Ternary search tries 

In this section, we complete the analysis of ternary 
search tries (tst’s) built on a random n-tuple S = 
(Sl,.. . , s,,) of infinite strings from the universe of 
keys U = A”. The set U is itself endowed with a 
probability measure, the source model, and we center 
the discussion on memoryless and Markov sources, 
though more general “dynamical” models are amenable 
to our approach. The two main results are Theorems 2.1 
and 2.2 below that give an exact analysis and an 
asymptotic analysis of search costs. 

More precisely, we consider the two parameters that 
characterize a positive search and a random search (or 
equivalently, a negative search, since a random search 
fails with probability 1). In the course of a search 
in a tst, different kinds of links are followed: the 
“comparison pointers” (with outcome ‘<’ or ‘>‘) and 
the “descent pointers” that correspond to an escape to 
the next level upon equality of characters. The analysis 
of the cost induced by equality pointers is the same 
as that of standard tries and essentially known. So, 
we concentrate here on the comparison cost induced 
by the bst access structures present at each node that 
predominates. Path length that describes the total cost 
of all positive searches grows like nlogn and the cost 
of a random (negative) search grows like logn. The 
purpose of this section is precisely to characterize the 
constants involved. 

Two complementary methods are used. The exact 
analysis is performed through an intermediate Poisson 

It then suffices to use the obvious correspondences and 
model, where the number N of strings is itself a random 

relations 
variable that obeys a Poisson law of parameter z. The 
asymptotic analysis further relies on Mellin transforms 

C[eaZ] = A, C[ze’*] = (1 ’ 
and Dirichlet series associated to the source model. 

- a%)2 ’ 
Exact analysis. We define the (comparison) path 

1 1 1 
-m---z 

length L(t) f o a tst t as the sum of the distances 

1 - a.2 1 - br 1 - (a + b).z. of all external nodes to the root of the tree, wherr 
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distance is measured in the number of comparison 
pointers; see Fig. 1. Similarly, for .s a string, we define 
the (comparison) search cost R(t, s) as the number 
of comparison pointers followed when accessing the 
string s in the tst t. The comparison costs decompose 
according to the underlying trie structure, 

w = 
(2.7) 

iT(Root(t)) + c L(tj) 
i=l 

R(Ui*S, t) = ri(Root(t)) + R(sy ti), 

where ti denotes the subtree oft relative to the letter ai. 
The terms !(Root(t)) and ri(Root(t)) are so-called toll 
functions and they represent respectively the traversal 
cost (in number of links) and the cost of searching for 
the letter ai in the bst present at the root of 1. 

Consider the Poisson model of rate z. It is a well 
known property that Poisson flows in an interval lead 
to (independent) Poisson flows in (disjoint) subintervals. 
Thus, the number Nh of strings that have a given prefix 
h obeys a Poisson law of parameter phf, where ph is 
the probability that a random element of A” starts 
with the string h, a quantity that depends of course on 
the source. Let pilh be the probability that a random 
string conditioned to start with the prefix h has its 
letter following h that equals ai. Then, the probabilistic 
behaviour of the tst that corresponds to the “place” 
associated to h is described by a Poisson model of rate 
zph with individual letter probabilities {pi!,,}. Then, 
Theorem 1 applies locally to this place: it suffices to 
replace in the statement the Poisson model P(z, {pi}) 
(rate z and letter probabilities {pi}) by the Poisson 
model P(zP~, {pil/a)). Denoting by E[&, VZPA, {pq,))] 
and E[ca, P(zph, {pilh})] the expected values of d, and 
c* in this local Poisson model, one has from Theorem 1: 

w-9 
ww1 = 1 E[da,P(m, {pi~d)l 

a=1 

E[ra(h)I = E[%,P(ZPh, {Pilh))l. 

What remains to be done is to relate the quantities 
of (2.8) to the expectations of the global parameters R 
and L. The recursion formula (2.7) unwinds, and the 
expectations under a Poisson model of rate z are found 
to satisfy 

EZPI = c ww1 
heA’ r 

&[R] = c Ph c &,h Wa(hl. 

hEA’ a=1 

Taking the individual expectations from (2.8), we then 

get 
P-9) 

E,[L] = 2 hg. g = [zPhfi,j] - 1 + eBzph+*jl] 9 

where Ph.[i,j] = cj,+ ph.6. (To Simplify notations, we 
identify a letter with its index and use has been made 
of the relations ph palh = ph.a.) 

The transition from the Poisson model to a model 
with the cardinality n of the data set being fixed is then 
simply achieved by the formal dictionary 

e -a’ H (1- a)“, zeSaz H n(l- a)“-‘, 

in accordance with the principles of the previous section; 
see (1.6). 

THEOREM 2.1. (EXACT COSTS) The (comparison) 
path length and the (comparison) cost of a random 
search in a ternary search trie made of n keys have 

expectations given by (Ph.[i,j] = cj,=i ph.k) 

[nPh.[i,j] - 1 + (1 - Ph.]i,j])“] > 

[l - (1 - Ph.[i,j])n] * 

It is a noteworthy feature that this theorem makes 
absolutely no assumption on the source model and is 
solely a consequence of independence. Quantities like 
ph admit more or less complicated expressions in each 
particular case. For the memoryless model, one has 
p,, = py’ . . .py’, where mi is the number of letters i 
in h, so that the sum over all h is an r-fold sum 
in disguise; for Markov models, one has to resort to 
matrix forms. Nonetheless, these formulae together 
with their Poisson counterparts constitute a useful 
input to asymptotic analysis where a phenomenon of 
“asymptotic simplification” takes place (as usual!). 

Asymptotic analysis. The expectations in Theo- 
rem 2.1 and Equation (2.9) belong to the paradigm of 
harmonic sums [6] that are general sums of the form 

F(z) = Ck@ Xk f (pk z), Asymptotic analysis of such 
sums is classically done by the Mellin transform [6], that 
associates to a real function g(r) the transform 

g*(s) = drn g(x)x’-’ dz. 

The Mellin transform F* of the general harmonic sum 
5 factorizes* as F*(s) = ham, where h(s) = 

LeK &pa is the associated Dirichlet series. It is 
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known that the asymptotic behaviour of F(z) is driven 
by the singularities of the Mellin transform F*(s), hence 
eventually by singularities of the Dirichlet series A(s). 

The Poisson expectations in (2.9) prove more basic, 
and we start with them. Introduce the Dirichlet series 

A(s) = 2 c c Ph.i y. 
hEA* i<j %i31 

The Mellin transforms of the expectations E,[L] and 
E,[R] are, by the harmonic sum property, -A(s) 
-A(s - l)I’(s), with definition domains (-2, -1) and 
(-1,O). Singularities are needed to complete the anal- 
ysis. 

Two kinds of sources are considered here: memo- 
ryless sources and sources based upon Markov chains. 
A memoryless source (sometimes called Bernoulli) pro- 
duces infinite strings where a letter ei has probability 
pi to appear independently of past history. A Markov 
source produces letters with an initial distribution and 
with transition probabilities pjli, the probability of pro- 
ducing j given i. (Only first-order Markov models are 
considered here for notational simplicity.) In both cases, 
the Dirichlet series A(s) has an explicit expression. For 
the memoryless source, one has 

For the Markovian source, the first character distribu- 
tion being {&}, one has a matrix form, 

Ns) = (hg*ph-*) (a-*) Standard tries under a Markov model have been 
analysed by Jacquet and Szpankowski [lo] who addi- 
tionally obtained limit distributions. The analysis con- 

l (Qgk-). 

ducted here provides an extension of their logarithmic 
= 

l-(pl-‘+-~~+p,-‘) 
cost estimates to tst’s. It even applies to non-Markovian 
sources, for instance continued fraction representations 
of real numbers (where the alphabet N is now infinite), 
and more generally so-called “dynamical sources” [18]. 
Standard (array) tries have been analysed in the con- 

A(s) = ‘b, (I - q-l g, tinued fraction context in [S]. From [8, 181 and methods 
of this paper, ternary search tries applied to continued 
fraction representations still lead to logarithmic costs, 
for instance, 

(2.10) 

where & = (P?;-~)I<~<~, P, = (pjli-‘) is the element- 
wise power of order--6 of the transition matrix, and b, 
is the vector whose the kth component is 

and on the property _that dominant poles of i(s) are 
exactly the same for A(s) and A(s). 

THEOREM 2.2. (ASYMPTOTIC COSTS) The (campari- 
son) external path length path and random search for a 
ternary search tree built on n keys produced by a source 
S, either memoryless (m) or Markovian (M), have av- 
erages that satisfy 

E&l = $cs *nlogn-l-O(n) 

&JR] = &cs * logn + O(l), 

where the entropy HS and the quantity CS are source- 
dependent constants 

Hm = C -Pi log Pi 
i 

HM = crk ~-Pjlklogpjlk 

c,=2h 

j 
PiPj 

i<j pi + ’ * * + Pj 

cM=2crkc 
PilkPjlk 

k i<j Piik + . * ’ •i- Pjlk. 

Pilkpjlk 

(Pill: + * * * + Pjlk)‘+” ’ 

In both case, the function A has a simple pole at s = -1 
and the residue turns out to be related to the entropy of 
the source, as is apparent in the memoryless situation. 

For the analysis with a fixed data set cardinality n, 
we appeal to a technique a “Dirichlet depoissonization” . 
It is baaed on the observation that the averages in 
Theorem 2.1 are also harmonic sums, but with a more 
complicated Dirichlet series, 

~(‘) = 2 hi* ~ ~ (log 1 - oh., j,> -a ’ 

En[L] = &F n 1Ogn + O(n) 
r -8 

I-CF = $ ; + c 1 
k>2 k2 - ’ 

The proof is based on the use of transfer operators 0, 
that vastly generalize the matrix forms like (2.10) that 
are associated with Markov chains. 

3 Comparative studies 

As detailed in the introduction, tries exist in three 
major versions: the array-trie (the standard version), 
the list-trie, and the bst-trie (the ternary search trie 
implementation). These should be compared in terms 
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Pointers 

array-trie (standard) list-trie bst-trie (tst) 

Al 
2 3 

KS 
-n 
Hs 

-n 
Hs 

Path length 
1 

-nlogn %logn CS 

Hs Hs 
-nlogn 
Hs 

Search $logn G 
j.glogn $logn 

Figure 2: A comparative table of three trie implementations under three cost measures. The corresponding 
constants are given in Theorem 2.2 for C’s = C,, CM and Eq. (3.12) for C$ = cm, C$. 

of time and space complexity, that is in terms of storage 
utilization and access cost. Theorems 2.1 and 2.2 
quantify precisely the access cost for tst’s. The reference 
parameters are the number of internal nodes IO, the 
path length Lo, and the search cost R” of standard 
array-tries, whose analysis stems from Knuth’s books, 

(3.11) 

&[I01 ’ e-n 
Hf 

E,[LO] N -nlogn 

En [RO] 
Hf 

- dogn- 

These estimates are valid for both the memoryless (m) 
and the Markov (M) source [lo, 11, 131 , Hs is the 
source entropy, and the approximation sign ‘a’ in size 
estimates conceals oscillations of a minute amplitude 
arising from complex poles of Dirichlet series. 

The exact and asymptotic methods of Section 2 ap- 
ply to list-tries, with the simpler analysis of linked lists 
being substituted for the analysis of bst’s in Section 1. 
The (comparison) path length L* and the search cost R? 
of list-tries are found to satisfy 

(3.12) \ I 

En[L*] N gn logn, E#? - & s logn 

G = C(i - l)Pi, 
i k i 

Thus, all three structures have logarithmic access costs, 
require linear space, albeit with different constants. 
Globally, the situation for all three data structures, our 
two main models, and the three complexity measures is 
summarized by the table of Fig. 2. 

It is interesting to note that some of these properties 
are dependent upon a finite alphabet cardinality as the 
continued fraction model induces an average path length 
of O(n(log n)2). 

Ezperimental data. In order to assess the relevance 
of these analyses, we have conducted a simulation cam- 
paign on large real textual data. When we started, 
we were hopeful that the data structure alternatives 
could behave qualititatively in a way compatible with 
the theoretical models, but did not expect quantitatively 
much predictive power given the simplicity of our mod- 
els (infinite strings, first-order Markov chains, asymp- 
totic regime). The real situation turned out to be a 
little better. 

As reference data, we have taken Herman Melville’s 
novel Moby Dick whose complete text is available on 
the World Wide Web. The whole book comprises 
1,295,OOO characters and 217,000 words -contiguous 
alphabetical character strings- whose lengths range 
between 1 (the word ‘a’) and 20 (‘uninterpcnetratingly’). 
Various experiments have been conducted, like splitting 
the text into halves, filtering out short words (of length 
5 5, say), etc. There are altogether 17,448 distinct 
words in the whole novel. One can then easily build 
a Bernoulli model and a Markov model on the corpus. 
The theoretical estimates for the entropy and the C 
constants are then determined by Theorems 2.1 and 2.2: 

H, = 2.896, HM = 2.271 

Cm = 10.649, c;*, = 10.447 

c,,, = 3.298, CM = 2.2%. 

(As anticipated, the Markov model leads to a lower 
entropy estimate and the values found here are in fair 
agreement with estimates based on other texts [19].) 
For search costs R”, I??, R, in standard, list, and bst 
tries containing n data items, this yields respectively 



Moby Dick data. The evolution of insertion costs [left: array-trie, middle: list-trie, right: bst-trie], or 
equivalently negative search costs, shows an unclear tendency to increase as the number of data items n increases, 
and there is a fairly large variability of numerical data, 

The presentation obtained by plotting against logn the costs averaged over successive batches of 10 insertions 
exhibits more clearly the logarithmic trends, 
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and leads to empirical formula for the search costs in array-tries, list-tries, and bst-tries: 

E,[P] = 0.8logn, E,[R*] RS 3.0logn, E,[R] M l.Ologn. 

Finally, the evolution of path length divided by n log n, as insertions proceeds [bottom: standard trie, middle: 
bst-tries, top: list-tries], provides another view of the data. Here, the curves go by pairs corresponding to the two 
halves of the corpus. 

^.....~...~~_ ___- 
.- .-_... __ . . . . . . . 

_.-.... - 

Figure 3: A display of the evolution of search costs and path lengths as a function of the number of strings 
inserted in standard and hybrid trie structures. 



the predictions 

memoryless source (m) : 

0.345logn, 3.677logn, 1.138logn 

Markov source (M) : 

0.440logn, 4.600logn, l.OlOlogn. 

We describe in some detail one experiment; see 
Fig. 3 for graphics. Taking the first half of the text 
and retaining words of length 6 or more, we obtain a 
collection Pi of n = 7437 different words. The number 
of internal trie nodes is then 8444, and the path lengths 
of the standard array-trie (LO), list-trie (L*), and tst (L) 
appear to be, respectively, Lo = 50894, L* = 178688, 
L = 59715. A fit of the path length data and the 
individual insertion costs suggests approximate formulae 
(Fig. 3) 

E, [RO] NN 0.8 log n 

E,,[R*] M 3.0logn, 

En[R] R l.Ologn. 

for the search costs in the three structures. 
The theoretical predictions turn out to be optimistic 

by a factor of about 2 for trie size (number of internal 
nodes) and trie path length, a fact to be probably as- 
signed to the large number of closely resembling words 
in a dictionary based on raw written forms instead of 
“normal forms” (e.g., here, aboriginal, aboriginally, abo- 

riginalness). The predictions for list-tries are pessimistic 
by 20% (memoryless model) or 50% (Markov model). 
The predictions for bst-tries turn out to be quite close 
to reality (especially under the Markov model), a happy 
event. 

Simplifying the discussion (Fig. 2 and 3), a concise 
practical conclusion is as follows: 

Ternary search tries are an efficient data struc- 
ture from the information theoretic point of 
view since a search costs typically about logn 
comparisons on real-life textual data. List- 
tries require about 3 times as many compar- 
isons as ternary search tries that implement 
bst-tries. For an alphabet of cardinality 26, 
the storage cost of ternary search tries is about 
9 times smaller than standard array-tries. 

This justifies considering ternary search tries as a 
method of choice for managing textual data. As ex- 
pressed by Bentley and Sedgewick [2], “Ternary search 
tries combine the best of two worlds: the low overhead 
of binary search trees (in terms of space and running 
time) and the character-based eficiency of tries”. 
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