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Abstract	 Dynamic data structures for priority queues, dictionaries.., are
izfl under sequences of arbitrary insert, delete and query operations

in various contexts when the universe of keys is finite both exact and
asymptotic estimates are provided ; when the universe of keys is infinite,
a new asymptotic formula is given which makes it possible to analyze rather
complex data structures including binomial queues. We conclude by further
showing how to derive variance estimates for simple structures.

INTRODUCTION

Dynamic data structures (dds) can be subjected to various operations resul-
F~ing in a possible increase or decrease in size. The eldest such structures
are certainly linked lists considered in the mid fifties. Lists have the
advantage of requiring hardly more storage (one extra pointer per key) than
the quantity of information they are holding at each stage. Trees have the
further advantage of allowing a more efficient logarithmic search. The im-
portance and use of these structures for performing dictionary, priority
queue, linear list of partition ("union-find") operations are too well-
known to be recalled here and are described for instance in [5]. Surpri-
singly enough, analysis techniques -that constitute the object of the
present paper- have taken a much longer time to develop and have received
comparatively little attention. The reason can probably be assigned to the
difficulty of finding "natural" statistics, and, whet is more compelling,
to the difficulty of carrying out the analyses themselves due to the
inherent complexity of the underlying enumeration problems (it is usually
a non trivial teak to determine the number of configurations corresponding
to a given cost). The common pattern of all the existing dynamic analyses
is to consider for each integer n the set of all possible input sequences
of length n, or a sample subset taken as representative if the former is
infinite. Lot Or, be the finite set of sequences of length n on which the
analysis is performed. For a given data structure S together with its com-
panion algorithms and to each input sequence sometimes also called request
sequence of sequence of operations s is associated a certain cost usually
measured by the amount of time or storage resource required. Denoting this
cost by cost5(s), the average cost of a sequence of n inputs (or requests)
is naturally defined as

= -__I	 cost (S).n		card R	 seOn
This quantity will be called the integrated coat of data structure S under
sequences of n requests (of type Ii)
The present paper is in the line of previous works by the authors [3] to
which the reader is referred for some definitions and a more complete
bibliography. We are interested in the following questions not considered
in other works
I) Analyze dictionaries, priority queues... under the set of all possible
input sequences when the "universe" of possible keys is finite. This models
situations where all transactions are relative to e fixed reference file.
The case of priority queues appears for instance in an operating system
with e predetermined set of users each enjoying s certain priority.
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2) Analyze more complex data structures than have been previously conside-
red : the difficulty then is the rather heavy combinatorial expressions
for integrated costs which may soon prove intractable. We prove here the
existence of limit distributions for the profiles of histories (sampled in-
put sequences). The approach makes it possible to rederive in a simple way
asymptotic expressions for all known integrated costs of priority queues.
We demonstrate its usefulness by providing a complete study of binomial
queues. The analysis reveals rather deep periodicity phenomena in the struc-
ture under the effect of arbitrary sequences of inputs.
3) Study the dispersion of costs of dds under sequences of operations. We
explicit the case of memory occupation for most structures as well as the
number of comparisons for sorted and unsorted list implementations of
priority queues and dictionaries.

About the methods employed ' the keystone is the use of continued fractions
and orthogonal polynomials whose first appearance in the context of dynamic
structures goes to [21, [3]. Profile analysis and its applications branch
off with the use of analytical methods, some of them close to works on
register allocation or sorting networks. Variance analysis is related to
the domain of the so-called 'q-analogs' an active domain of combinatorial
theory.
In this brief survey, we hope to convince the reader that the analysis of
even the simplest algorithms (sorted and unsorted lists) in a dynamic
context is a very rich field with a host of interesting combinatorial as
well as analytic implications.

PRELIMINARY DEFINITIONS

We consider in the sequel operations of the following three types Inser-
tions (I) Deletions (p) ; Queries (Q)

Let U be the set of all possible keys -the "universe of keys-. A sequence
of operations of length n relative to U is a sequence of the type
w1(k1)w2(k2) ... w(k) where w.c(I,D,Q} and k.tU. Various limitations can
be imposed on the admissible sequences of operations, giving rise to dif-
ferent data types ; the types we consider here are
a) dictionaries (DICT) where operations and keys at any stage are unres-
tricted
b) dictionaries without queries whose sequences of operations are also
isomorphic to linear lists (LL) : here the w's can only be I or fl
c) priority queues (PQ) where operations can be either I or D but a deletion
only operates at each stage on the smallest key present in the structure.

To be meaningful a sequence of operations together with all its prefixes
must contain more l's than D's (no deletion on an empty file can occur
and we shall assume this natural condition to be satisfied). The foregoing
analyses will be performed with respect to various sequences of operations
each comprising as many I's as D's (thus preventing the analysis to be bia-
sed towards insertions). In each case we let 9. denote the set of all such
sequences of length n, and let Mn denote card n.
We are interested in the behaviour of data structures w.r.t. to either time
or storage, under sequences of operations in l. To each particular struc-
ture is associated the set of its unitary costs CIk, CDk, CQTe where Ctk is
the cost of operation performed on a file of size kt.

t In applications , the cost of an operation is not only a function of the
size of the file but also of the particular organization of keys resulting
from past operations. It can however be proved that such coefficients Cu
exist for structures that stay "random" under deletions [41. The Cni,5 are
then themselves computable as certain averages over configurations of the
structure.
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I - FINITE FILES

When the universe of keys is finite, say with cardinality N, the set of
allowable input sequences of length n is also finite and we have three
different types of statistics PQ/N/, LL/N/, DICT/N/. To estimate integrated
costs we first need to count the number of possible request sequences,
card [2 = H		The reader may try to convince himself thatn	

H'2' 3fl3		and	 H CT/3/	 ! 6	 + 3
4n + 3		

2n		n	 8	 8

	

8

Theorem		 [Generating functions for sequences of operations]
5_ForThICT/N/, i-e dictionaries over a universe of N keys	

N

	

N

ii		=	 and	 H	 z11 =

b) For LL/N/, i-e dictionaries without queries over N keys
N

n n!
z	
	(eZ+e_5)	

and	 EH	
n

c) For PQ/N/, i-e priority queues

He
H z

HeN+l(z)
2

r r!(m)2r)! \ 2

Let H	 k	 denote the number of extended sequences of-operations resulting
in a	 frñcture of size k i-e comprising k more I's than D's (thus
H H). Then

Theorem 1B [Generating functions for extended sequences of operations]
a) For DICT/N/ :	 HO,kfl	

=
()

e	 coshN_kz sinhkz

polynomial : He

(N

j	 l-(N-2j)z

where He (z) is the m-th Semite

b) For LL/N/

c) For PQ/N/ :
ˆ.H.'k,n

H		 -	
(N)

coshN_kz sirihkzo,k,n	 ml		k

N

	

HeNk(z
TN-_k) ! HeNl(z)

0

U

These results rely on the use of the continued fraction theorem of Flajolet
[2] ; the three finite fractions relative to the generating functions

n		 AHz of theorem 1 are

DICT/N/	

2
N.lzl-Nz-		

1-Hz
-(N-1 )2z

LL/N/

NJZ2

(N-1)2z2

PQ/N/

Nz
(N-I

The expressions given above yield expressions for the N		' H	 byo,k,n

	

	ncombinatorial sums. For example	

H CT/' = 2nN
[N

+
() (N-1 )n +

() (N-2)	
]
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Given a data structure with unitary costs CIk, CDk, CQk, we wish to compute

the corresponding integrated costs K=KIH where Kn	 cost(u). We
UEQ

assume for ease of exposition that CIk=CDk=CQk=Ck.

Theorem 2A [Integrated costs for priority queues over N elements]

For priority queues, the generating function of total costs K(z)								K z'
is a rationai fraction given by								a

					

2N-2k

(He	

2	
K(s)		N

.
2	 CNk (N-k) !		k(z))	 .		

HeN+l (z))

Similar rational expressions can also be given for linear lists and dictio-
naries. In these last two cases, it may also prove convenient to operate
with exponential generating functions taking

I	 V' '	 7N\ kK(z)
=2K-1-5--j-	

and	 C (u)	 L_ Ckk)U

as generating functions of integrated costs and unitary costs.

Theorem 2B [Integral transforms for integrated costs] : The generating
functions of unitary and integrated costs are related by

N

DICT/N/	 (z)	
(2z!)

L'[C(u)] ; LL/N/ : K(z)

where the linear transform C/N/ is	
2tanh z/2

L'[C(u)] = 2 f

= cosh z L'1C(u)]

C(u)

	

du

(l+u)N(I_u)	 /(1+u)2 tenh2z-4u

As in the other cases discussed in 13], this last theorem reduces the deter-
mination of integrated costs to the evaluation of integrals of elementary
functions relayed by the computation of Taylor expansions. Both theorem
and theorem 2B permit easy numerical tabulations of the integrated costs
of an arbitrary structure.

As an application these results enable us to compare two priorityueue
organizations A and B with corresponding integrated costs K and K under
the PQ/N/ statistics.It can be shown that the quantities K/n which repre-
sent the cost of a random operation ins random operation sequence of length
n tend, as n gets large,to a constant KA which, in a way, represents the
'steady-state" Cost of an operation in A under the statistics PQ/N/.

C
Theorem 2 : [Steady stare cost under PQ/N/1
The steady state cost of an operation of algorithm A under the statistics

PQ/N/ is	
oˆN

C ir where

N!
kA

alleN(a)HeNl (a)	

ka

	

A2
]T HeNk(a)

here	 (z)=He(,) and a the (positive real) root of He	 with smallest
modulus.

Notice that the coefficient k is nothing but the limiting probability
that an operation takes place at level k in the course of a sequence of
length 2n (see in section 2 the related notion of profile)
Theorem Z gives a numerical algorithm that suffices in all cases to com-
pare two different data structures.

0
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A treatment of linear lists and dictionaries could be given along very
similar lines.

II - PROFILES

We now consider the case where the universe of keys U is infinite. The
sampling technique introduced by Françon r4] amounts to selecting one repre-
sentant in each order-isomorphism class of input sequences. Canonical repre-
sentants called histories are defined by retaining at each stage only the
order of the key operated upon w.r.t. keys already in the structure. For
example » for priority queue data type, a history is 101012D0D0D0 which
represents any sequence of operations obeying the pattern	 insert a key
insert another key smaller than the first one (it then has rank 0 w.r.t.
the first key), insert another key larger than the two previous ones (it
then has rank 2 w.r.t. to these two keys), delete minimum... ; such a
history is a canonical represent of say 1(2.7) 1(0.5) 1(3.1) D . 0

min
D

min min min

We use the same notations as before H represents the number of histories
(from 0 to 0)-of length n, K represents the total cost of all histories of
length n and KK0/H11 is the integrated cost of sequences of length n.

It has been shown that priority queue histories lead to the continued
fraction	 n		

2
1-

	

lz	
22z




3z

and enumerations again involve the Hermite polynomials. From it follows the
simple enumeration H2

= i.3.5...(2n-1) n?

We recall the following result which has been used to analyze a variety of
simple structures

Theorem 3A		 [Integrated cost of priority queues] The generating function

K (z) =	
K2		

-- of the integrated cost of priority queues is related to

the generating function of individual costs C(u)				(CIk+CDkl)uk by
I

i:--- (17Z)
-i-2z

Setting Ck CIk + CDk+I, the above expression is equivalent to combinato-
rial expressions of integrated costsclK	 =	 c 2m-n (n-m-i	 m

2n		rnˆKˆn	 k	 k-i /

	

(2n

These expressions are already difficult to handle when C =

whence the K	 K /0	2n		2n 2n

D

H--+--	 +-
k		2	 3	 k

The following result gives a very simple way of computing the first terms
in the asymptotic expansion of K2

Theorem 30 For smoothly growing individual costs Ck, the integrated costs
satisfy

1< 2n

1/2
C			 ----

Lk1			 (1+0(n))
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Theorem 3 tells us that weighting corresponding to the passage of individual
costs to integrated coats can be described asymptotically by means of an
integral form (Previous ways of computing integrated coats required a
recourse to generating functions). The proof is achieved by considering the
quantities 71k n which are the multipliers of Ck in the expression of K2
rk n represents the probability of an operation being performed on a five
of'size k in the course of a random history of length 2n. It is shown that

the r	 have a limit distribution with density _._1__
k,n

wvv





5.1		5.2	 0.3	 0.4	 5.3	 3.6	 s'k/5

The emergence of the limit distribution
of the rk n is demonstrated on figure I
in the cases when n100 and nH000. With
theorem 3 we readily rederive the values
of

K2n corresponding to individual costs
of a imple form

C	 10K		'\n;k

	

	2 n

C =k =K %B-;
k	 2n

	

3

Ck
=	 + ' +" +	 =0 K2

' n logo

Figure I : The limit distribution
of rk n and the two cases n=100,
n1006.

The main interest of theorem 3, besides its simplicity, is to make possible
analysis of rather complex structures. We study the case of binomial queues
one of the most efficient administration policies for priority queues, which
was discovered by Vuillemin [6].
The structure is based upon a decomposition into blocks of size 1,2,4,8...........
The analysis of individual costs in e good implementation of binomial queues
has been performed by Brown [1] who showed

Theorem	 'Individual costs for binomial queues]

Let k =Lb.2' be the binary decomposition of n (b = 0 or 1). Then the
widividual	 Costs of binomial queues are CIk

=
v2(k)

and
CDk+I

=
O(k)-v2(k)

where v2(k)
= min{ijb. 0̂} is the number of trailing zeros in the binary

representation of k 'and 0(k) is an arithmetical function given by

0(k) =	 i biZ.

We thus have in this case CK
= CIk

+ CD
kI 0(k) . Although an expression

for C(u) L ckuk is available as a Lambert series, it proves rather dif-

ficult to work with. Accordingly, 0(k) has a rather erratic behaviour reflec-
ting the steep threshold effects for values of k that are powers of 2. The
approach through theorem 3 proves extremely useful in this context. We
first have

Theorem	 [Analytic expression of 0(k)] The function o (2p) is expressible
as

H

o(2p)	 log2p
+

G(log2p)
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where G is a bounded periodic function with period 1, with Fourier coeffi-
cients

-'JLL.

	

_
g0	 log2	

'
r		 2ikor

T3j1	 1k	 (xk
-

Function C is highly discontinuous. The above expression can however be
combined with theorem 3 to yield.

Theorem 4 : [Integrated cost of binomial queues] The integrated cost of
hberations on a binomial queue is	 = n log2n

+ n P(log2n) 0(n)

where P is a continuous function with period 1, whose Fourier coefficients
are

I	 F(Ix)2

	

C(Ixk.= T1 F(2O-x»)

	

1k

These estimates are in good agreement with the actual integrated costs. On
figure 1 below we have plotted the values of

Q (n) =	 - log2n,
and this last term rapidly conforms to P(log2n).

-3
60

55	
-

55	 005	 355	 400	 500 655

Figure 2	 The quasi-periodic term in the integrated cost of binomial
queues.

Similar treatments could be given for dictionaries and linear lists.

ITT - VARIANCES

H

H

We have shown in the previous two sections ways of estimating costs
either exactly or asymptotically in various contexts of requests. We here
show that the continued fraction approach can be used to also attain results
about typicality of the average case. More precisely, we consider five pro-
blems hereafter called MeaPQ, MemDTCT, TimePQ-SL, TimePQ-UL, TimeDTCT-SL.
Here Mem stands for memory, PQ and DICT retain their meaning as priority
queue and dictionary types, SL is the sorted list and UL the unsorted list
structure. So, for instance TimePQ-SL refers to the time coat of the sorted
list implementation of priority queues, MemPQ refers to the total storage
occupation measured in the number of keys stored under the statistics of
priority queues histories ... . These various problems are studied in the
context of an infinite set of keys as in section 2. We shall present the
line of attack on TimePQ-SL, i-s number of comparison (coup) in the sorted
list implementation of priority queues under sequences of operations.
Given a priority queue history, the number of resulting comparisons in the
sorted list implementation is readily determined when an insertion ope-
rates with rank r, the number of comparisons performed to place the ele-
ment in the structure is plainly r+I ; a deletion requires no comparison

U	 F and ç refer resp. to the Euler gamma function and the Riemann zeta
function ; y is the Euler constant.
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at all since the minimum element always occurs first in the structure. The
number of comparisons associated with h=I I I I I 0 0 . I 0 0 . 0 0

0021 4minmin2min minminmin

is comp(h) = (0+1) + (0+1) +(2+l) + (1+1) + (4+1) + (2+1) = 13.

Let Hm c be the number of priority queue histories of length n leading to c
comparisons in SL. We are interested in the distribution of conp, and more
specifically to its mean and variance.

From results recalled in section 2, we know that		1.3.5... (2n-1)n?,
c 2n,c

representing the total number of priority queue histories.

The
112n c have a number of interesting combinatorial properties

n(n+1)	 H	 - I	 (2n\ .	 - I
2 ' 2n,r[Tkn/	

H	
n(n+ü

-
n,

	

2

In the sequel we shall work with the polynomials H2 (q)=q1 EH2 qc

The parameter corp belongs to the category of cumulative parameters in the
analysis of algorithms. Such parameters have quadratic worst case and occur
for instance in the analysis of insertion sort, bubble sort, tree sort,
quiaksort ... . From an analytical stand point the difficulty is that a
series like	

H2(q) 5n	 of	 H2(q)
!1t

can in no way be obtained as s combination of elementary functions since

the degree of H2(q)

	

n(n-1

Appealing again to the continued fraction theorem, one can prove that

=EH	 2n		1		2	 s-I
H(z;q)		2(q)z

=		 -----------	 where [a] = i+q+q +---+ q			
Filz		

[2]z2			

J3 ]z2

This continued fraction reduces to the continued fraction of section 2
when q=1 of which it is said to be a q-analog.
The mean and variance of coop over histories of length 2n are given by

dH

	

1
iJ2n

=
i4 [m	 ] q:

H		0 iffnˆc2n, c

	2 1

[A;
H(s)]4-n ; a

2n n?
	dq	 q1

2n
+

2n'

but it is to be noted that H(a;q) together with its dérivates at q=I stron-
gly diverge.

The convergents of H(z;q) are finite fractions which can be expressed as
Pr (z	

with t' r and 1r polynomials in z and q. The denominator polynomials

Q satisfy a classical recurrence relation ; they are related to q-analogs
of the Hermite polynomials.

A Eulerimn generating function of the reciprocal polynomials of
r

defined

by	 K(t,z;q) =
£ ar-I	 [I][2]...Fr] '(this reduces to et2I2tz

when q=I) satisfies the difference






This equation reduces to a classical differential equation when q=1 ; it
can be "solved expressing K either as an infinite product, or in terms of
the q-exponential. It suffices here to notice that this functional equation
makes it possible to determine the values of

[d2		q
Qr]

after a rather difficult computation. Using orthogonality relations that
hold between the Q's and the H's further allows determination of

r. (z;q)l
[dq		r

	

Jq=i

[~q- Hi(q)]

and we have the very simple result
[H2n()]q=1

a) p			
11 (n+5)		2	 n(n-1)(n-3)b) o =

211				6	 2n		45

These results are related to combinatorial results by Touchard and Riordan
relative to chord intersection problems. We have here a unified approach
which leads to a solution of all the problems mentioned above. Also moments
of higher order can be determined. We state

Theorem 5 The mean and variance of memory for dictionary and priority
queue histories are given by

MemPQ	 12n
=	 21)		

3

	

2n

- (n-1)(ni-1MemDICT : p -	
6		 n

The mean and variance of time for the sorted
tionaries and priority queues are given by	

n(n+5)TimePQ-SL

	

02n




(n-i) (n-2)TImeDICT-SL :	 p	 12

n(n-1)(2n+1
45

20n4-278n3+ 1472n2-3073n+2047
180

list implementation of dia-

2 - n(n--1)(n+3)
2n

	

4,5

- (n-2)(2n 2+lIn-1)
n		360

For instance the proof of	 MemPQ uses another q-analog of Hermite polyno-
mials whose associated generating function satisfies the difference-diffe-
rential equation

	

K(t,z;q) zK(t,z;q) - qK(qt,z;q).

Figure 3 : Distribution of costs for sorted vs.
unsorted implementations of priority queues.
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The problem TimePQ.UL of the
time complexity for unsorted
lists actually reduces to
MemPQ. Figure 3 gives the
comparative distributions in
number of comparisons of
sorted versus unsorted lists
under the PQ statistics
when n=25.
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