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Abstract : Dynamic data structures for priority queues, dictionaries... are
Znalyzed under sequences of arbitrary insert, delete and query operations
in various contexts : when the universe of keys is finite both exact and
asymptotic estimates are provided ; when the universe of keys is infinite,
a new asymptotic formula is given which makes it possible to analyze rather
complex data structures including binomial queues. We conclude by further
showing how to derive variance estimates for simple structures.

INTRODUCT ION

ﬁvnamlc data structures {dds} can be suhjected to variocus operations resul~-
tlng in a possible increase or decrease in size. The oldest such structures
are certainly linked lists considered in the mid fifties. Lists have the
advantage of requiring hardly more storage {(one extra pointer per key) than
the quantity of information they are holding at each stage. Trees have the
further advantage of allowing a more efficient logarithmic search. The im-—
portance and use of these structures for performing dictionary, priority
quene, linear list of partition ("union-find") operations are too well=-
known to be recalled here and are described for imstance in [5]. Surpri-
singly enough, 2@nalysis technigues —-that constitute the object of the
present paper— have taken a much longer time to develop and have received
comparatively little attention. The reason can probably be assigned to the
difficulty of finding "natural" statistics, and, what is more compelling,
to the difficulty of carrying out the analyses themselves due to the
inherent complexity of the underlying enumeration problems (it is usually
a non trivial task to determine the number of configurations corresponding
to a given cost). The common pattern of all the existing dynamic analyses
is to consider for each integer n the set of all possible input sequences
of length n, or a sample subset taken as representative if the former is
infinite. Let i, be the finite set of sequences of length n on which the
analysis is performed. For a given data structure $ together with its com-
panion algorithms and to each input seguence sometimes also called request
sequence of sequence of operations s is associated a certain cost usually
measured by the amount of time or storage resource required. Demoting this
cost by cost3(s), the average cost of a sequence of n inputs (or requests)
1s naturally defined as :
—
gS T EJ Qosts(s)‘
n card {1, selly
This quantity will be called the integrated cost of data structure S under
sequences of n requests (of type ).

Th? Present paper is in the line of previous works by the authors [3] to
which the teader is referred for some definitions and a more complete
blulxoorapqv We are interested in the following questions not considered
1n other works :

1 Analyze dictionaries, priority queues .. under the set of all possible
1“PUC sequences when the "universe" of possible keys is .1n1te e. This models
situations where all transactions are relative to a fixed rﬂlerence file.
The case of priority queues appears for instance in an ope?ﬂt ng system
vith a predetermined set of users each enjoying a certain priority.
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2) Analyze more complex data structures than Have been previously conside-
red : the difficulty then is the rather heavy comhinatorial expressions
for integrated cests which may soon prove intractable. We prove here the
existence of limit dist;iég}inns for the EE?fiIes of histories (sampled in-
put sequences). The approach makes it possible to rederive in a simple way
asymptotic expressions for all known integrated costs of priority queues.

We demoastrata its usefulness by providing a complete study of binomial
gueues. The analysis reveals rather deep periodicity phenomena in the struc-
ture under the effect of arbitrary sequences of inputs.

3) Study the dispersion oF costs of dds under sequences of aperations. We
explicit the case of memory occupation for most structures as well as the
number of comparisons for sorted and unsorted list implementations of
priority queues and dictignaries.

About the methods employed , the keystone is the use of continued fractions
and orthogonal polynomials whose first appearance in the context of dynamic
structures goes to [2], [3]., Profile analysis and its applications branch
off with the use of analytical methods, some of them close to works on
register allocation or sorting networks. Variance analysis is related to
the domain of the so-called “q-analogs™ an active domain of combinatorial
theory.

In this brief survey, we hope to convince the reader that the analysis of
even the simplest algorithms (sorted and unsorted 1lists) in a dynamic
context is a very rich field with a host of intaresting combinatorial as
well as analytic implications.

PRELIMINARY DEFINITIONS

We consider in the sequel operations of the following three types : Inser—
tions (I) ; Deleticms (P) ; Queries (Q).

Let U be the set of all possible keys -the "universe" of keys-. A seguence
of aperations of length n relative to U is a sequence of the type

wl(kl)w (k) ... w_(k ) where w.«{I,D,Q} and k.<l. Various limitations can
be imposed on the admiseible sequences of operations, giving riss to dif-
ferent data types ; the types we consider here are :

a) dictionaries (DICT) where operations and kevs at any stage are unres-
tricted ;

b) dictionaries without gqueries whose sequences of pperations are also
isomorphic to linear lists (LL) : here the w's can only be I or D ;

c) priority queues (PQ) where operations can be either I or D but a deletion
only operates at each stage on the smallest key present in the structure.

To be meaningful a sequence of operations together with all its prefixes
must contain more 1's than D's (no deletion on an empty file can occur

and we shall assume this natural condition to be satisfied). The foregoing
analyses will be performed with respect to various sequences of operations
each comprising as many I's as D's (thus preventing the analysis to be bia-
sed towards insertions}. In each case we let @, denote the set of all such
sequences of length n, and let H, denote card {l,.

We are interested in the behaviour of data structures w.r.t. to either time
or storage, under sequences of operations in {I,. To each particular struc-
ture is associated the set of its unitary costs CI,, CPr, CQy where Cuuy is
the cost of operation w performed on a file of size kT,

T In applications, the cost of an operation is not only a function of the
size of the file but also of the particular organization of keys resulting
from past operations. It can however be proved that such coefficients Cuy
exist for structures that stay "random" under deletions [4]. The ka are
then themselves computable as certain averages over configurations of the
strucfure.
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I - FINITE FILES

When the universe of keys is finite, say with rardinality N, the set of
allowable input sequences of length n is also finite and we have three
different types of statistics PQ/N/, LL/N/, DICT/N/. To estimate integrated
costs we first need to count the number of possible request sequences,
card ﬂn = Hp. The reader may try to convince himself that
/ ; =1 ICT 1
H?’Qxlf'z 4850 and HD /3/_1 PN 3 PN 3 oM,
2n 8 8 8
Theorem !A : [Cenerating functions for sequences of cperations)
a) For DICI/N/, i-e dictionaries over a wiiverse of N keys

N N)
n 2z i
Z'Hn 1:21_ = (;‘:'___j_{) and ZHn 2" = z (‘},

! 2

b) For LL/N/, i~e dictionaries without queries over N keys

N
i z -z
~ +
2n Z - (5———-9 ) and 28 2" ;
n n! 2 n

c) For PQ/N/, i~e priority queues

= n HeN(z}

2, H z = —————r— where He (z) i8 the m—th Hermite
n Heq+](zJ m
5 2y
. ! 0
ynomtal : H = B [-E) - ]
polynomia eafe) = ¢ rraeEn ( 7
Let H o denote the number of extended seque":ces of-operations resulting
in a tfaCrure of size k i-e comprising k more I's than D's (thus
H_=H }. Then
n a,0,n
Theorem 1B : [Generating fxnctto 18 ; ended ecquences of operations]
o DTOT N - N-k .

a) For DICT/N/ : E:Ho - n, = (k) cmsh z sznh z 3

b) For LL/N/ : 2 H = ( ) PN T :
o,k,n n’
He {z)
F N/ o Jh L ND Mk
c) For PQ/N/ : Z:Ho,k,n z Y Heﬁ+1(z) . 0

These results rely on the use of the continued fraction theorem of Flajolet
[2] 3 the three finite fractions relative to the generating functions

=
ZJann af theorem 1A are

DICT/N/ : LL/N/ : PQ/N/
SR 3 ! g [
g i G
1Mo o Nol2 1- a“__i;lfh__g 1= }_ =12
el 1222 1o _(N-Dy2e .
The expressions given above yield expressions for the H H by

y Bigus
n
combinatorial sums. For example : Oglein

gDICTINT _ pu {Nn + (’T) (-1 + (g) M-2)" 4. ]

n
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Given a data structure with unitary costs CIy, CDy, CQy, we wish to compute
—
cast(u). We

A

\

the corresponding integrated costs E;=Kn/Hn where K,

f=¢

314
. a5 i n
assume for ease of exposition that Czk"CDk"CQk Ck.

A ; e 4 :
Theorem 2" : [Integrated costs for priority gusues over N elements]

- . . ~ . n
For priority queuss, the gemerating fimetion of total costs K{z)= E: Kz
g a rational fraction given by

ZN-Zk 2
N! z
2 = g % %o (Hek“)) - 2
(‘eN+i % )

Similar rational expressions can also be given for linear lists and dictio-
naries. In these last two cases, it may also prove convenient to operate
with exponential generating functions taking

A 1 z“+] 5 N k
E(z} = ZK\:; ma—-r and Clu) = )1_(4 Ck (k)u

as genarating functions of integrated costs and unitary costs.

B 3 . o % ; ;
Theorem 2~ : [Integral transforms for integrated costs] : The generating
T e o e pp— - . -
Functions of wnitary and tntegrgied costs are related Dy :
- N

2z
pIcT/N/ : R(z) = ii_gl Miey1 5wy : R = eost™z 1/ recuy
whare the linear tremsform LKN( 5
'11hzzﬁ2
Mo - 2 f oiud dy .0
0 (T4} (1-u) #?]+u}2 tanh®z-4u

As in the other cases discussed in [3], this last theorem reduces the deter-
mination of integrated costs to the evaluation of integrals of elementary
functions relayed by the computation of Taylor expansions. Both theorem 24
and theorem 2B permit easy numerical tabulations of the integrated costs

of an arbitrary structurs.

As an application these results enable us to compare two pgiorityw%ueue
organizations A and B with corresponding integrated costs ;A a2nd Ky under
the PQ/N/ statistics.It can be shown that the quantities K&/n which repre-
sent the cost of a random operation in a random operation sequence of length
n tend, as n gets large,to a constant A which, in a way, represents the
"steady-state™ cost of an operation in A under the statistics PQ/N/.

C .

Theorem 2~ : [Steady state cost under PQ/N/]

The steady state cost of an operation of algorithm A wnder the statistics
Al X0 A L

PQ/N/ 18 K = oftn Cp Ty Where :
&
N! o N2
T, = ——: - = He, . {(a) 3
k A N k! HN-k
b 1
mHeN(G,HeN+i(G)

here H‘I}e(z)ﬂﬁefﬁ) and o the (positive reall) root of lf;NH(Z) with smallest
modulus.

Notice that the coefficient T, is nothing but the Iimiting probability
that an operatiom takes place at level k in the course of a sequence of
length 2n (see in section 2 the related notion of profile).

Theorem 2% gives a numerical algorithm that suffices in all cases to com—
pare two different data structures.

0
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A treatment of linear lists and dictionaries could be given along very
similar lines.

II - PROFILES

We now consider the case whare the universe of keys U is infinite. The
sampling technique introduced by Frangon 4] amounts to selecting one repre-
sentant in each order isomorphism claSS of inpuL sequences. Canon*cal repre-
order of the key‘zﬁerated upon w.r.!. keys alrcady in tne structure. For
example , for priority queue data type, a history is IgTyI,DyDgDg which
represents any sequence of operations obeying the pattern : insert a key ;
insert another key smaller than the first one (it then has rank 0 w.r.t.
the first key), insert another key larger than the two previous ones (it
then has rank 2 w.r.t. to these two keys), delete minimum... ; such a
hist is a canonical represent of say I(2.7) I(0.5) I(3.1) D . ;D
istory al represent of say I( ) 1(0.5) I(3.1) s Dmln i
We use the same notations as before : Hy represents the number of histories
(from 0 to 0)_of length n, K, represents the total cost of 211 histories of
length n and K =K /H, is the integrated cost of sequences of length n.

It has been shown that priority queue histories lead to the contlnued
- =1
fraction 2: Hzt = — 1
nzo n

1-

2

lz
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and enumerations again involve the Hermite polynomials. From it follows the

simple enumeration H2n = 1,3.5...(2n-1) = n? .

We recall the following result which has been used to analyze a variety of

simple structures :

i A "
Theorem 3~ : [Integrated cost of prioriiy queues)| The generating function

iy n
Ky = 2 %, % of the

nzo  In n!

the generating fimetion o

Setting Cp = CI + CDy,|, the above expression is equivalent to combinato-
rial expressions of integrated costs :

K, = 2, ¢ 20 (poo-l) Am/o the X, = :
2 ik {k k-1 (in) whence the KZn K2n/H2n
- . — ’ o B} |
hese expressions are already difficult to handle when Ck = i+‘5*-§.. A'E.

The following result g1ues a very simple way of computing the first terms
in the asymptotic expansion of K2 :

Theorem 3° : For smoothly growing individual costs Cpo the integrated costs
satisfy 1 4o

_ e dé ( 1
& c L8 o Tompisy) a]
G n | ey T (00)
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Theorem 3 tells us that weighting corresponding to the passage of individual
costs to integrated costs can be described asymptotically by means of an
integral form (Previous ways of computing integrated costs required a
recourse to generating functions). The proof is achieved by considering the
quantities Te n which are the multipliers of C, in the expression of K, 3
T on represents the probability of an cperation being performed on a rilfe
of 'size k in the course of a random history of length 2n. It is shown that

1

the L have a limit distribution with density —— .
] : V1<24¢
L]
3 A The emergence of the limit distribution

of the m , is demonstrated on figure |1
| in the cases when n=100 and n=1000. With
N theorem 3 we readily rederive the wvalues
of K, corresponding to indiwvidual costs
of a"simple form :

-

™
T

j c, =1 =X, "n ;

/ k 2n ’
3 A 2

/Y R it .
; /// K Ck k = KEn " 3
. —F b o
: mMﬂ(i\me Cx b 2 Fena¥ k= KZ v n legn
M

@ 0.0 0.1 0.3 0.k 0.5 0,6 ok

Figure 1 : The limit distribution

of T, p and the two cases n=100,

n=1000.

The main interest of theorem 3, besides its simplicity, is to make possible
analysis of rather complex structures. We study the case of hinomial queues,
one of the most efficient administration policies for priority queues, which
was discovered by Vuillemin [6].

The structure is based upon a decomposition into blocks of size 1,2,4,8,...
The analysis of individual costs in a good implementation of binomial gueues
has been performed by Brown [1] who showed :

Theorem : [Individual costs for binomial queues]

1

et k = E:b121 be the binary decomposition of n (by = 0 or 1). Then the
dividual costs of binomial queues are CIk = vz(ki and CD?+! = U(k)nvz(k)

[ag]

5

where v, (k) = min{i]bi#O} 15 the number of trailing zeros in the binary

representation of k'and o(k) is an arithmetical fimction given by
o(k) =
We thos have in this case CK = CIk + CDk+I = (k). Although an expression
k. : . . .
for c(u) = E: e U is available as a Lambert series, it proves rather dif-
ficult to work with. Accordingly, 0(k) has a rather erratic behaviour reflec~
ting the steep threshold effects for values of k that are powers of 2. The
approach through theorem 3 proves extremely useful in this context. We
first have :
Theorenm 4t : [dnalytic expression of o(k)] The finction o(2p) vs expressible

a8
o(2p) = log,p + G(log,p)




Efj+xk) - ikw T 0
I+, (% iog2J ’

¥r . .
L log2 °’ By

(=]
|

Function G is highly discontinuous. The above expression can however be
combined with theorem 3 to yield.

Theorem 4° : [ Integrated cost of binomial queues] The integrated cost of
7n operations on a binomial queue ts K, =n logzn + n Pflogzn} + o(n)
where P 15 a continuous function with period 1, whose Fourier coefficients
p, are 2
.4
r(l+ 1+
L3 1 (1+x) c{l+y)

I
2 " Togz ¢ Px T TogZ TQUX)) oy, 0

Py

These estimates are in good agreement with the actual integrated costs. On
figure | below we have plotted the values of

K
Q(n) = —%E-— 1og2n, and this last term rapidly conforms to P(logzn).
(o)
| ? /\///\—___Pn
EX

0 loo 200 300 00 500 600
Figure 2 : The quasi-pericdic term in the integrated cost of binomial
queues,

Similar treatments could be given for dictionaries and linear lists.
III - VARIANCES

We have shown in the previous two sections ways of estimating costs
either exactly or asymptotically in wariocus contexts of requests. We here
show that the continued fraction approach can be used to alse attain results
about typicality of the average case. More precisely, we consider five pro-
blems hereafter called MemPQ, MemDICT, TimePQ-SL, TimePQ-UL, TimeDICT-SL.
Here Mem stands for memory, PQ and DICT retain their meaning as priority
queue and dictionary types, SL is the sorted list and UL the unsorted list
structure. So, for instance TimePQ-SL refers to the time cost of the sorted
list implementation of priority queues, MemPQ refers to the total storage
occupation measured in the number of keys stored under the statisties of
priority gueues histories... . These various problems are studied in the
context of an infinite set of keys as in section 2. We shall present the
line of attack on TimePQ-SL, i-e number of comparison (corp) in the sorted
list implementation of priority gueues under sequences of operations.
Given a priority queue history, the number of resulting comparisons in the
sorted list implementation is readily determined : when an insertion ope-
rates with rank r, the number of comparisons performed to place the ele-
ment in the structure is plainly r+l ; a deletion requires no comparison
—_—
T T and ¢ refer resp. to the Euler gamma function and the Riemann zeta
function ; v is the Euler constant.

229




at all since the minimum element always oceurs first in the structure. The
r arisons associated with h=1 1 I I I , D L, T T L n
number of compari 00271 4am1n min ZDmln min mlanln

is comp(h} = (O+0) + (O+1) +(2+1) + (I+1) + (4+1) + (2Z+1) = I3.

Let HU,C be the number of priority queue histories of length n leading to ¢

comparisons in SL. We are interested in the distribution of corp, and more

specifically to its mean and variance.
From results recalled in section 2, we know that E;Iﬁn Cﬂ!.B.S...(?n*J):n?,

? 1
representing the total number of priority queue histories. I

The H, have a number of interesting combinatorial properties :

2n,
. n(ntl) | o1 (Zn .
Hzn’c¥0 iffnscs—5%> ; HZn,n =7 % ) $ Hzn

1.

n(nel)

In the sequel we shall work with the polynomials H (q)=q~n,§:H qc.
Zn € 2n,c

The parameter cornp belongs to the category of cumulative parameters in the

analysis of algorithms. Such parameters have gquadratic worst case and occur

for ipnstance in the analysis of imnsertion sort, bubble sort, tree sort,

gquisksort... . From an analytical stand point the difficulty is that a

series like n -3 zn
gﬂzn(q) z of %,Hzn(q) YRR

can in no way be obtained as a combination of elementary functions since
p(u~l)
2

the degree of H, (q) is

Appealing again to the continued fraction theorem, one can prove that :
2n o 2 5-1
n(q)z s = T where [s] = l+g+q +...+q i

H(z:q) =}:H2

This continued fraction reduces to the continued fraction of section 2
when g=I of which it is said to be a g-analog.

The mean and variance of corp over histories of length Zn are given by :

2
2 1 d 2
S PN [__2“ Hz;m(”‘)] “Han * Mape
dq q=1
but it is to be noted that H(z;q) together with its deérivates at q=1 strom-
gly diverge.
Eh% cogvergents of H(z;q) ave finite fractions which can be expressed as
Z‘q
r L
6;?E?EY with Pr and Qr polynomials in z and gq. The denominator polynomials

“En a7

P o
| &
[N

2 | b
1=
—

=y

0_ satisfy a classical recurrence relation ; they are related to g-analogs

of the Hermite polynomials.
A Eulerian gensrating function of the reciprocal polynomials of Qr dafined
T.Y 2
: T T 1 z t 5 -(t°/2)+t=
by ¢ K(t,z;q) &= Qr-l (zfq) 1927, Tx , (this reduces to e

when q=1) satisfies the difference equation K(qt,zé:i;?ét,z;q) ={z-t)K(t,z;q) .
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This equation reduces to a classical differential equation when gq=] ;
can be "solved" expressing K either as an infinite product, or in terms of

the q-exponential., It suffices here to notice that this functional equation
makes it possible to determine the wvalues of

2
d d
o= 0 (z;q)] y | =5 Q_(z:q)
[dq z q=1 dg® T =1

after a rather difficult computation. Using orthogonality relations that
hold between the Q's and the H's further allows determination of

d .2
[EE Hzn(q)]q2} i JiT- B, (q) s
dq q=1
and we have the very simple result :
. - n{ot5) ) 2 _ n(n-1)(n+3)
a) Uy, = g i ) o %5

These results are related to combinatorial results by Touchard and Riordan
relative to chord intersection problems. We have here a unified approach
which leads to a solution of all the problems mentioned above. Also moments

of higher order can be determined. We state :

Theorem 5 : The mean and variance of memory for dictionary and priority
b PRI i i) - -
queue histories are given by !

o _ n(2n+1) 2 o al-ly2nety
MemPQ : Yin 3 S 45
" -{l_ 3 1 a2 2_ 904
MedICT ¢ u_ = (n Ié(nd) ng1 _ 20n'-278n +‘?;6n 3073n+2047

The mean and variance of time for the sorted list implememtation of dic-—

tionaries and priority queues are given by

 mePO— . - n{n+5) 2 _ n(o-1)(n+3)
TimeP(-SL @ uﬁn 5 cln 75
2
i {n~{i(n-2} 2 (n=2){(In"+1in-1)
rimeDICT-SL & = AETLINDTSS R 3L 57 L2 M 0 el S
TimeDICT-SL un W U“ 350 a

of MemPQ uses another g-analog of Hermite polyno-

For instance the proof
generating function satisfies the difference-diffe~

mials whose associated
rential equation a{r,z;q)
——“ﬁ“ﬂ— = zK(t,z3q) - qK(qt,ziq).

The problem TimePQ.UL of the
‘time complexity for unsorted
lists actually reduces to
MemPQ. Figure 3 gives the
comparative distributions in
number of comparisons of

o D!gl ) st 3lave
IaI

LR | IJJ -—uqd Biare
/

LEH JII

Figure 3 : Distribution of costs for sorted vs.

unsorted implementations of priority queues.

under the PQ statistics
when n=25,

sorted versus unsorted lists
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