SUR LA SOMME D'UNE PROGRESSION GÉOMÉTRIQUE

On the sum of a geometric progression

Toulouse, May 30, 2008 Philippe Flajolet, INRIA, Rocquencourt

From: Serge Cohen 8/04/08 10:56 "L'expose se doit d'etre assez general ...

1. Basics

The main (easy) theorem
The ballot problem...
The coin-fountain problem

A PIECE OF TRIVIALITY

Quasi-inverses. Let \mathcal{A} be a **ring**; by *telescoping*:

$$(1-f)(1+f+\cdots+f^n) = 1-f^{n+1}.$$

Let \mathcal{A} be "topological"; *if* $f^n \rightarrow 0$, *then*

$$\frac{1}{1-f} = 1 + f + f^2 + f^3 + \cdots$$

Sum of a geometric progression

- Works analytically with \mathbb{R}, \mathbb{C} .
- Works formally with C[[z]] (needs f(0) = 0), as well as C[[x, y, z, ...]], C⟨⟨x, y, z, ⟩⟩.

ANOTHER PIECE OF TRIVIALITY

Distributivity. Let \mathcal{A} be a ring. Then

$$\begin{cases} (a+b)^3 &= aaa + aab + aba + abb + baa + bab + bba + bbb \\ (a+b)^n &= \sum_{|w|=n} w \quad (all words of length n). \end{cases}$$

Corollary A. If $a = \nearrow$, $b = \searrow$, $c = \rightarrow$, then

$$(c+ab)^{3} = \overbrace{\rightarrow \rightarrow \rightarrow}^{3} + \swarrow \searrow \rightarrow \rightarrow + \rightarrow \swarrow \rightarrow \rightarrow + \checkmark \checkmark \checkmark \rightarrow \rightarrow + \cdots$$

Corollary B. Combining with the *sum of a geometric progression*

$$\frac{1}{1-c-ab} = \sum \overbrace{(\rightarrow \nearrow \rightarrow \rightarrow \checkmark)}^{\text{any }\# \text{ blocks}}.$$

TWO PIECES OF TRIVIALITY TOGETHER ...

And get Corollaries D, E, F, G, H, I, J, K, L, M,...

... GIVE A THEOREM(?!)

Theorem [The main continued fraction theorem]

Continued Fraction = a cascade of geom. progressions = Sum of all lattice paths

Wednesday, May 28, 2008

Algebraic continued fractions

- 1. Cont'ed: simple applications (ballot, coins)
- 2. Orthogonal polynomials
- 3. Arches
- 4. Snakes
- 5. Addition formulae
- 6. Ellíptic stuff

A SOLUTION (?!) TO THE BALLOT PROBLEM

"Two candidates, Alice and Bob, with (eventually) each n votes. What is the probability that Alice is always ahead or tied?" Do $a \mapsto z$; $b \mapsto z$; $c \mapsto 0$. By main theorem:

We get Catalan numbers [Euler-Segner 1750; Catalan 1850]

$$C = \frac{1}{1 - z^2 C} \implies C = \frac{1 - \sqrt{1 - 4z^2}}{2z^2} \implies C_n = \frac{1}{n+1} \binom{2n}{n}.$$

The probability is $\frac{C_n}{\binom{2n}{n}} = \frac{1}{n+1}.$

$C(q) = 1 + q + q^2 + 2q^3 + 3q^4 + 5q^5 + 9q^6 + 15q^7 + 26q^8 + \cdots$

Greetings from <u>The On-Line Encyclopedia of Integer Sequences</u>! Search: 1, 2, 3, 5, 9, 15, 26, 45

Scarch. 1, 2, 5, 5, 5, 5,	10, 20, 40	
Displaying 1-2 of 2 re	esults found.	pag
Format: long short	internal text Sort: relevance references number Highlight: on off	
A005169 Num (Form	ber of fountains of n coins. herly M0708)	
1, 1, 1, 2, 3, 19232, 33379, 8281088, 14373 OFFSET 0 COMMENT A	5, 9, 15, 26, 45, 78, 135, 234, 406, 704, 1222, 2120, 36 57933, 100550, 174519, 302903, 525734, 912493, 1583775, 2 165, 24946955, 43299485, 75153286, 130440740 (list; graph; listen) ,4 fountain is formed by starting with a row of coins, then additional coins on top so that each new coin touches tw previous row.	79, 6385, 11081, 748893, 4771144, stacking o in the

Number of coin fountains: $C_n \sim 0.31 \cdot 1.73566^n$.

Ramanujan's fraction:

2. Convergent polynomíals

Revisiting the ballot problem
Three-term recurrences
Orthogonality

"Two candidates, Alice and Bob, with (eventually) each n votes. If Alice is always ahead (or tied), what is the probability that she never **leads** by more than h?"

The number of favorable cases has generating function (GF), with $z^2 \mapsto z$:

$$C^{[h]}(z) = \frac{1}{1 - \frac{z}{1 - \frac{\cdot}{1 - z}}} \left. \right\} h \text{ stages.}$$

 $\frac{1}{1}, \quad \frac{1}{1-z}, \quad \frac{1-z}{1-2z}, \quad \frac{1-2z}{1-3z+z^2}, \quad \cdots, \quad \frac{F_{h+1}(z)}{F_{h+2}(z)},$

where $F_{h+2} = F_{h+1} - zF_h$ are Fibonacci polynomials.

• "Constant-coefficient" recurrence; Lagrange inversion.

• Roots are $1/(4\cos^2\theta)$, $\theta = \frac{k\pi}{h}$; partial fractions.

• Lagrange [1775] & Lord Kelvin & De Bruijn, Knuth, Rice [1973]

$$C_n^{[h]} = \sum_k \cdots 4^n \cos^{2n} \left(\frac{k\pi}{h}\right) = \sum_k \cdots \binom{2n}{n-kh}.$$

- Related to Kolmogorov–Smirnov tests in statistics:
 Compare X₁,..., X_n and Y₁,..., Y_n? "Sort and vote!"
- Pólya [1927]: totally elementary proof of elliptic-theta transformation:

$$\sum_{\nu=-\infty}^{\infty} e^{-\nu^2 t^2} = \sqrt{\frac{\pi}{t^2}} \sum_{\nu=-\infty}^{\infty} e^{-\pi^2 \nu^2/t^2}.$$

= Do multisection of $(1+z)^{2n}$, with $h = t\sqrt{n}$, in two ways!

Linear fractional transformations [homographies] get composed like 2×2 matrices:

$$\frac{ax+b}{cx+d} \qquad \mapsto \qquad \begin{pmatrix} a & b \\ c & d \end{pmatrix}.$$

- Convergent polynomials $\frac{P_h(z)}{Q_h(z)}$ satisfy a three-term recurrence with numers/denoms of the continued fraction.
- Reciprocals of convergent polynomials are orthogonal with respect to $\langle f, g \rangle = \langle f \cdot g \rangle$, where moments $\langle z^n \rangle$ are coefficients in the expansion of the continued fraction.

The formal theories of continued fractions and orthogonal polynomials are two aspects of one and the same thing.

3. Arches and such

Colouring rules
An interconnection problem from industry
Hermite polynomials

In how many ways can one join 2n points on the line in pairs?

A descent from altitude *j* has *j* possibilities: $d_j \mapsto jz$, $a_j \mapsto z$.

Wednesday, May 28, 2008

• The answer lies in the zeroes of **Hermite polynomials**.

$$\langle f,g\rangle = \int_{-\infty}^{\infty} f(x) \cdot g(x) e^{-x^2/2} dx.$$

Louchard & Janson: a Gaussian process = deterministic parabola + Brownian noise.

4. Snakes and curves

Arnold's snakes
Stieltjes' fraction
Postnikov's Morse links

Arnold [1992]: How many types of "open" curves?

D. André [1881]: alternating perms = the coefficients of tan(z) and sec(z).

$$\begin{cases} \tan z = 1\frac{z}{1!} + 2\frac{z^3}{3!} + 16\frac{z^5}{5!} + 272\frac{z^7}{7!} + \cdots \\ \sec z = 1 + 1\frac{z^2}{2!} + 5\frac{z^4}{4!} + 61\frac{z^6}{6!} + \cdots \end{cases}$$

Proof. Decompose according to minimum and get ODE: $Y' = 1 + Y^2$ via recurrence.

$$\sum_{i=1}^{\infty} (\tan)_{2n+1} z^{2n+1} = \left\langle \left\langle \int_{0}^{\infty} e^{t} \tan(zt) dt \right\rangle \right\rangle = \frac{z}{1 - \frac{1 \cdot 2 z^{2}}{1 - \frac{1 \cdot 2 z^{2}}{1 - \frac{2 \cdot 3 z^{3}}{1 - \frac{2 \cdot$$

Related to a bijection of Françon and Viennot

= A continued fraction of Stieltjes

A continued fraction of Postnikov (2000)

= Morse links (systems of closed Morse curves)

Theorem [F.2008]. The Morse–Postnikov numbers satisfy

$$L_n \sim \widehat{L}_n, \qquad \text{where} \quad \widehat{L}_n = \frac{1}{2}(2n-1)! \left(\frac{4}{\pi}\right)^{2n+1}.$$

E.g.:
$$\frac{L_4}{\widehat{L}_4} \doteq 0.99949.$$

5. Addition formulae & c.

Stieltjes-Rogers
Addition formulae, paths, and OPs are all belong to a single family of identities
Applications to "processes"...

The Stieltjes-Rogers Theorem

Definition.
$$\phi(z) = \sum_{n=0}^{\infty} \phi_n \frac{z^n}{n!}$$
 satisfies an addition formula if
 $\phi(x + y) = \sum_k \omega_k \phi_k(x) \phi_k(y)$, where $\phi_k(x) = \frac{x^k}{k!} + O(x^{k+1})$.
Theorem. An addition formula gives automatically a continued
fraction for $f(z) = \sum_{n=0}^{\infty} \phi_n z^n = \langle \langle \int_0^{\infty} e^t \phi(zt) dt \rangle \rangle$.
 $\frac{1}{1-x-y} = \sum_k (k!)^2 \frac{x^k/k!}{(1-x)^{k+1}} \frac{y^k/k!}{(1-y)^{k+1}}$
 $\sum n! z^n = \frac{1}{1-z-\frac{1^2 z^2}{1-3z-\frac{2^2 z^2}{2}}}$
 $\sum_{k=1}^{\infty} e^{t} e^{$

Homm

Systems of paths and **birth–death processes**: Number & probability of weighted paths from *a* to *b*;

- Discrete time processes: I.J. Good [1950's];
- Continuous time processes: Karlin–McGregor; F–Guillemin [AAP 2000];
- Combinatorial processes = "file histories", [F–Françon–Vuillemin–Puech, 1980+]

→ Number of paths from 0 to absorbing state, equiv. probability of traversal, is $\propto \frac{1}{Q_h}$; "Keilson's Theorem". → Paths from 0 to k have exp. gen. function φ_k of addition formula. Classical orthogonal polynomials seem to share many properties.

Theorem [Meixner 1934]: If the exponential generating function satisfies a strong decomposability property,

$$\sum_{h} \overline{Q}_{h}(z) \frac{t^{n}}{n!} = A(t) e^{zB(t)},$$

then there are only five possibilities.

Laguerre	Hermite	Poisson-Charlier	Meixner I	Meixner II
Perms	Arcs	Set partitions	Snakes	Pref. arrang.
$\frac{1}{1-z}$	$e^{z^{2}/2}$	e^{e^z-1}	sec(z)	$\frac{1}{2-e^{z}}$.

Computations are automatic.

G. Letac & librairies?

The Mabinogion urn model

Spread of influence in populations:

$$A \Longrightarrow (B \longrightarrow A), \ B \Longrightarrow (A \longrightarrow B).$$

Analytic duality from Ehrenfest urn solved by M. Kac

Theorem [F–Huillet 2008]. Fair urn: absorption time is $\sim \frac{1}{4}N \log N$, with limit distribution of density $\approx e^{-t}e^{-e^{-2t}}$.

Stieltjes suggests considering addition formulae and continued fractions related to $\sinh^{k}(z)\cosh^{N-k}(z)$, which have combinatorial significance (\neq Markov) and relate to

$$\frac{1}{1-\frac{1\cdot N z^2}{1-\frac{2\cdot (N-1) z^2}{\dots}}}$$

5. Some Ellíptic matters

Jacobían functions
Dixonían functions
Bacher's numbers

- Algebraic curves of genus 1 are doughnuts. The integrals have two "periods". The inverse functions are elliptic functions; i.e., doubly periodic meromorphic.
- Weierstraß \wp arises from $y^2 = P_3(z)$;
- Jacobian sn, cn arise from $y^2 = (1 z^2)(1 k^2 z^2);$
- Dixonian sm, cm arise from $y^3 + z^3 = 1$.

They satisfy addition formulae!

- **Theorem [F; Dumont 1980].** Jacobian elliptic functions count alternating perms w/parity of peaks.
- Theorem [Conrad+F, 2006]. Dixonian functions have continued fractions

$$\int_{0}^{\infty} \operatorname{sm}(u) e^{-u/x} du = \frac{x^{2}}{1 + b_{0}x^{3} - \frac{1 \cdot 2^{2} \cdot 3^{3} \cdot 4x^{6}}{1 + b_{1}x^{3} - \frac{4 \cdot 5^{2} \cdot 6^{2} \cdot 7x^{6}}{1 + b_{1}x^{3} - \frac{4 \cdot 5^{2} \cdot 6^{2} \cdot 7x^{6}}{\dots}};$$

$$\equiv \text{ levels in trees and an urn model } (\approx \text{Yule process}), \&c$$

$$\bullet \text{ Theorem [Bacher+F, 2006]. Pseudofactorials}_{a_{n+1}} = (-1)^{n+1} \sum {n \choose k} a_{k}a_{n-k} \text{ have a } CF$$

$$\sum a_{n}z^{n} = \frac{1}{1 + z + \frac{3 \cdot 1^{2}z^{2}}{1 - z + \frac{2^{2}z^{2}}{1 + 3z + \frac{1}{2}}}}.$$

$$\Delta 098777 \quad a(0)=0, a(n+1)=(-1)^{n}(n+1)^{s} \operatorname{sun}(\operatorname{biomial}(n,k)^{s}a(k)^{s}(n-k), K=0.n), n>=0.$$

$$I_{1}, I_{2}, Z_{2}, Z_{2}, I_{5}, -40, -320, 1040, 12160, -52480, -742400, 5472000, 6641}$$

