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1. Basics
The main (easy) theorem

The ballot problem...

The coin-fountain problem
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A PIECE OF TRIVIALITY

Quasi-inverses. Let A be a ring; by telescoping:

(1− f )(1 + f + · · · + f n) = 1− f n+1.

Let A be “topological”; if f n → 0, then

1

1− f
= 1 + f + f 2 + f 3 + · · · .

Sum of a geometric progression

Works analytically with R, C.

Works formally with C[[z ]] (needs f (0) = 0), as well as
C[[x , y , z , . . .]], C〈〈x , y , z , 〉〉.
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ANOTHER PIECE OF TRIVIALITY

Distributivity. Let A be a ring. Then






(a + b)3 = aaa + aab + aba + abb + baa + bab + bba + bbb

(a + b)n =
∑

|w |=n

w (all words of length n).

Corollary A. If a =↗, b =↘, c =→ , then

(c+ab)3 =

3 blocks︷ ︸︸ ︷
→→→ + ↗↘→→ + → ↗↘→ + ↗↘↗↘↗↘ + · · · .

Corollary B. Combining with the sum of a geometric progression

1

1− c − ab
=

∑
any # blocks

︷ ︸︸ ︷
(→ ↗↘→→ ↗↘) .
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TWO PIECES OF TRIVIALITY TOGETHER ...

Recall:
1

1− c − ab
=

∑
any # blocks

︷ ︸︸ ︷
(→ ↗↘→→ ↗↘) .

Substitute further ab %→ a 1
1−d b. Then:

Corollary C. With a =↗, b =↘, c =→ , d =⇒, in C[[a, b, c , d ]]:

1

1− c − a
1

1− d
b

=
∑

(all diagrams of height ≤ 1)

=
∑
→ ↗⇒⇒⇒ ↘→→ ↗⇒ ↘ .

And get Corollaries D, E, F, G, H, I, J, K, L, M,. . .
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... GIVE A THEOREM(?!)

Theorem [The main continued fraction theorem]

1

1− c0 −
a0b1

1− c1 −
a1b2

1− c2 −
. . .

=
∑

(all lattice paths)

1

1− c0 −
a0b1

1− c1 −
a1b2

1− c2 −
. . .

1− ch

=
∑ (

all lattice paths
with height ≤ h

)

Continued Fraction = a cascade of geom. progressions
= Sum of all lattice paths
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Algebraic continued fractions

1. Cont’ed: simple applications (ballot, coins)

2. Orthogonal polynomials

3. Arches

4. Snakes

5. Addition formulae

6. Elliptic stuff
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A SOLUTION (?!) TO THE BALLOT PROBLEM

“Two candidates, Alice and Bob, with (eventually) each n votes.
What is the probability that Alice is always ahead or tied?”
Do a !→ z ; b !→ z ; c !→ 0 . By main theorem:

C :=
1

1−
z2

1−
z2

. . .

=
∑

β ballot sequence

z |β| =
∑

n

Cnz
2n.

We get Catalan numbers [Euler-Segner 1750; Catalan 1850]

C =
1

1− z2C
=⇒ C =

1−
√

1− 4z2

2z2
=⇒ Cn =

1

n + 1

(
2n

n

)
.

The probability is
Cn(2n
n

) =
1

n + 1
.
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COIN FOUNTAINS

C (q) = 1 + q + q2 + 2q3 + 3q4 + 5q5 + 9q6 + 15q7 + 26q8 + · · ·
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Do: aj !→ 1, bj !→ qj . Then:

C (q) =
1

1−
q

1−
q2

1−
q3

· · ·

=

∑
(−1)n

qn2+n

(1− q)(1− q2) · · · (1− qn)
∑

(−1)n
qn2

(1− q)(1− q2) · · · (1− qn)

.

Number of coin fountains: Cn ∼ 0.31 · 1.73566n.

Ramanujan’s fraction:

1

1 +
e−2π

√
5

1 +
e−4π

√
5

1 +
e−6π

√
5

· · ·

= e2π/
√

5





√
5

1 + 5

√
53/4

(1/2+1/2
√

5)5/2 − 1
− 1 +

√
5

2





= 0.9999992087 · · · .


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2. Convergent polynomials

Revisiting the ballot problem

Three-term recurrences

Orthogonality
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“Two candidates, Alice and Bob, with (eventually) each n votes.
If Alice is always ahead (or tied), what is the probability that she
never leads by more than h?”
The number of favorable cases has generating function (GF), with
z2 !→ z :

C [h](z) =
1

1−
z

1−
. . .

1− z





h stages.

1

1
,

1

1− z
,

1− z

1− 2z
,

1− 2z

1− 3z + z2
, · · · ,

Fh+1(z)

Fh+2(z)
,

where Fh+2 = Fh+1 − zFh are Fibonacci polynomials.

“Constant-coefficient” recurrence; Lagrange inversion.

Roots are 1/(4 cos2 θ), θ = kπ
h ; partial fractions.
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Lagrange [1775] & Lord Kelvin & De Bruijn, Knuth, Rice [1973]

C [h]
n =

∑

k

· · · 4n cos2n

(
kπ

h

)
=

∑

k

· · ·
(

2n

n − kh

)
.

Related to Kolmogorov–Smirnov tests in statistics:
Compare X1, . . . ,Xn and Y1, . . . ,Yn? “Sort and vote!”

Pólya [1927]: totally elementary proof of elliptic-theta
transformation:

∞∑

ν=−∞
e−ν2t2

=

√
π

t2

∞∑

ν=−∞
e−π2ν2/t2

.

= Do multisection of (1 + z)2n, with h = t
√

n, in two ways!
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Orthogonal polynomials

Linear fractional transformations [homographies] get composed like
2× 2 matrices:

ax + b

cx + d
"→

(
a b
c d

)
.

Convergent polynomials
Ph(z)

Qh(z)
satisfy a three-term recurrence

with numers/denoms of the continued fraction.

Reciprocals of convergent polynomials are orthogonal with
respect to 〈f , g〉 = 〈f · g〉, where moments 〈zn〉 are
coefficients in the expansion of the continued fraction.

The formal theories of continued fractions and orthogonal
polynomials are two aspects of one and the same thing.
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3.Arches and such

Colouring rules

An interconnection problem from industry

Hermite polynomials
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In how many ways can one join 2n points on the line in pairs?

↗ ↗ ↗ ↗ ↘ ↘ ↘ ↘ ↗ ↗ ↘ ↘
1 2 2 1 2 1

A descent from altitude j has j possibilities: dj #→ jz , aj #→ z .

∑

n≥1

(1 · 3 · · · (2n − 1))z2n =
1

1−
1 · z2

1−
2 · z2

1−
3 · z2

. . .

.

Gauss !!
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Lagarias-Odlyzko-Zagier [1985]: Which capacity do we need to
arrange pairwise connections between 2n points, with high
probability?
• The answer lies in the zeroes of Hermite polynomials.

〈f , g〉 =

∫ ∞

−∞
f (x) · g(x) e−x2/2 dx .

Proof. For width h:

1

1 −
1 · z2

1 −
2 · z2

. . .

1 − h · z2






h levels.

Louchard & Janson: a Gaussian process = deterministic parabola
+ Brownian noise.

Airy connection?
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4. Snakes and curves

Arnold’s snakes

Stieltjes’ fraction

Postnikov’s Morse links
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Arnold [1992]: How many types of “open” curves?

D. André [1881]:  alternating perms = the coefficients of 
tan(z) and sec(z).
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↗4↘3

↗3 ↘2

↗2 ↘1

∑
(tan)2n+1z

2n+1 = 〈〈
∫ ∞

0
et tan(zt) dt 〉〉 =

z

1−
1 · 2 z2

1−
2 · 3 z3

· · ·

.

Related to a bijection of Françon and Viennot

= A continued fraction of Stieltjes

1, 2, 16, 272, ...

Ann. Fac. Sci.  Toulouse, 1894
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Theorem [F.2008]. The Morse–Postnikov numbers satisfy

Ln ∼ L̂n, where L̂n =
1

2
(2n − 1)!

(
4

π

)2n+1

.

E.g.:
L4

L̂4

.
= 0.99949.

A continued fraction of Postnikov (2000)

= Morse links (systems of closed Morse curves)

Theorem [F.2008].
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5. Addition formulae &c.

Stieltjes-Rogers

Addition formulae, paths, and OPs are 
all belong to a single family of identities

Applications to “processes”...
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The Stieltjes–Rogers Theorem

Definition. φ(z) =
∑∞

n=0 φn
zn

n!
satisfies an addition formula if

φ(x + y) =
∑

k

ωkφk(x)φk(y), where φk(x) =
xk

k!
+ O(xk+1).

Theorem. An addition formula gives automatically a continued

fraction for f (z) =
∞∑

n=0

φnz
n = 〈〈

∫ ∞

0
etφ(zt) dt〉〉.

1

1 − x − y
=

∑

k

(k!)2
xk/k!

(1 − x)k+1

yk/k!

(1 − y)k+1

∑
n!zn =

1

1 − z −
12 z2

1 − 3z −
22 z2

. . .

[Biane, Françon-Viennot]
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Systems of paths and birth–death processes:
Number & probability of weighted paths from a to b;

Discrete time processes: I.J. Good [1950’s];

Continuous time processes: Karlin–McGregor;
F–Guillemin [AAP 2000];

Combinatorial processes = “file histories”,
[F–Françon–Vuillemin–Puech, 1980+]

! Number of paths from 0 to absorbing state, equiv. probability of

traversal, is ∝ 1

Qh
; “Keilson’s Theorem”.

! Paths from 0 to k have exp. gen. function ϕk of addition formula.

0 1 2 3 4 5
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Meixner’s class of special OP’s

Classical orthogonal polynomials seem to share many properties.

Theorem [Meixner 1934]: If the exponential generating function
satisfies a strong decomposability property,

∑

h

Qh(z)
tn

n!
= A(t)ezB(t),

then there are only five possibilities.

Laguerre Hermite Poisson-Charlier Meixner I Meixner II

Perms Arcs Set partitions Snakes Pref. arrang.
1

1− z
ez2/2 eez−1 sec(z)

1

2− ez
.

Computations are automatic.

G. Letac & librairies?
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The Mabinogion urn model

Spread of influence in populations:
A =⇒ (B −→ A), B =⇒ (A −→ B).

Analytic duality from Ehrenfest urn solved by M. Kac (1947).

Theorem [F–Huillet 2008]. Fair urn: absorption time is

∼ 1
4N log N, with limit distribution of density % e−te−e−2t

.

Stieltjes suggests considering addition formulae and continued fractions

related to sinhk(z) coshN−k(z), which have combinatorial significance

(&=Markov) and relate to

1

1−
1 · N z2

1−
2 · (N − 1) z2

· · ·

.

Analytic duality from Ehrenfest urn solved by M. Kac (1947).Analytic duality from Ehrenfest urn solved by M. Kac (1947).

Theorem [F–Huillet 2008]. Fair urn: absorption time is
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5. Some Elliptic matters

Jacobian functions

Dixonian functions

Bacher’s numbers
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Algebraic curves of genus 1 are doughnuts. The integrals
have two “periods”. The inverse functions are elliptic
functions; i.e., doubly periodic meromorphic.

Weierstraß ℘ arises from y2 = P3(z);

Jacobian sn, cn arise from y2 = (1− z2)(1− k2z2);

Dixonian sm, cm arise from y3 + z3 = 1.

They satisfy addition formulae!

Algebraic curves of genus 1
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Theorem [F; Dumont 1980]. Jacobian elliptic
functions count alternating perms w/parity of peaks.

Theorem [Conrad+F, 2006]. Dixonian functions
have continued fractions
∫ ∞

0
sm(u)e−u/x du =

x2

1 + b0x3 −
1 · 22 · 33 · 4 x6

1 + b1x3 −
4 · 52 · 62 · 7 x6

· · ·

;

≡ levels in trees and an urn model (≈Yule process), &c

Theorem [Bacher+F, 2006]. Pseudofactorials
an+1 = (−1)n+1

∑(n
k

)
akan−k have a CF

∑
anz

n =
1

1 + z +
3 · 12 z2

1− z +
22 z2

1 + 3z +
. . .

.
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Continued 

Probabilistic

Processes

Combinatorics

Analysis &

Orthogonal P’s

Summability

Number Theory

Special Functions

Fractions
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