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Téléphone : +33 1 39 63 55 11 — Télécopie : +33 1 39 63 53 30
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Calcul rapide avec deux nombres algébriques

Résumé : Nous présentons des algorithmes rapides pour le calcul du produit com-
posé et de la somme composée, ainsi que pour le “produit diamant” de polynômes
univariés.
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FAST COMPUTATION WITH TWO ALGEBRAIC NUMBERS

ALIN BOSTAN, PHILIPPE FLAJOLET, BRUNO SALVY, AND ÉRIC SCHOST

Abstract. We propose fast algorithms for computing composed multiplica-

tions and composed sums, as well as “diamond products” of univariate poly-
nomials.

1. Introduction

Let k be an effective field and let f and g be monic polynomials in k[T ], of degrees
m and n respectively. We are interested in computing their composed sum f ⊕ g
and their composed multiplication f ⊗ g, which are polynomials of degree D := mn
defined by

f ⊕ g =
∏
α,β

(
T − (α+ β)

)
and f ⊗ g =

∏
α,β

(T − αβ),

the products running over all the roots α of f and β of g, counted with multiplicities,
in an algebraic closure k of k.

More generally, given a bivariate polynomial H ∈ k[X,Y ], of degree in X less than
m and of degree in Y less than n, we study the fast computation of the so-called
diamond product f �H g of f and g, which is the polynomial of degree D = mn
defined by

f �H g =
∏
α,β

(
T −H(α, β)

)
,

the product running over all the roots α of f and β of g, counted with multiplicities.
This polynomial, a priori defined over k, has in fact coefficients in the base field k.

The operation �H was introduced by Brawley and Carlitz in [7]. They showed
that if f and g are polynomials and k is finite, their diamond product enjoys the
following remarkable property: f �H g is irreducible if and only if both f and g
are irreducible and their degrees co-prime. Consequently, the composed sums and
multiplications are used for constructing irreducible polynomials of large degree
over finite fields, see [7, 8, 23] and [24].

These operations, in particular composed sums and composed products, actually
appear as basic subroutines in many other algorithms, including computations with
algebraic numbers, symbolic summation and study of linear recurrent sequences.
We present some of these applications in Section 5.

Previous complexity results. The polynomials f ⊕ g and f ⊗ g can be expressed in
terms of resultants, see for instance [18]:

(1) (f ⊕ g)(x) = Resy(f(x− y), g(y)) and (f ⊗ g)(x) = Resy(ymf(x/y), g(y)).
1



2 ALIN BOSTAN, PHILIPPE FLAJOLET, BRUNO SALVY, AND ÉRIC SCHOST

The formulas (1) already show that f ⊗ g and f ⊕ g have coefficients in k. They
also provide a way of computing these polynomials. However, this is not entirely
satisfactory: even using the fastest algorithms for bivariate resultants [22, 27], the
resultant-based computation has complexity of order Olog(M(D) min(m,n)) field
operations in both cases. Here M(D) stands for the number of base field operations
required to compute the product of two polynomials of degree D and, also, the first
D + 1 coefficients in the product of two formal power series given at precision D.
The symbol Olog indicates the presence of logarithmic terms.

In characteristic zero, Dvornicich and Traverso suggested in [13] a different ap-
proach, based on the use of the power sums of the roots of the two polynomials.
Their idea is to express the power sums of the roots of f ⊕ g and f ⊗ g in terms
of those of f and g and then to make mutual conversions between the power sums
and the elementary symmetric sums of the roots. These conversions are made via
the Newton formulas. The complexity of their algorithm is O(D2) operations in k.

Brawley, Gao and Mills proposed in [8] several algorithmic solutions for the com-
posed multiplication and sum over a finite field. Apart from the resultant method
based on formulas (1), the most efficient is the LRS (linearly recurrent sequence)
method. However this method still has quadratic complexity in the degree of the
output and it works only under the assumption of an irreducible output.

In [8, Section 3], Brawley, Gao and Mills also considered the problem of the efficient
computation of the general diamond product. Their algorithm only works over a
finite field and under the same assumption on the irreducibility of the output. If f
and g have the same degree m (so that D = m2), the complexity of their algorithm
has order O(D2M(

√
D)).

Our contribution. This note aims to show that one can do better, both in charac-
teristic zero and in positive characteristic. We basically reformulate the key idea in
[13], that is, to represent a polynomial by the power sums of its roots, in terms of
generating series.

If the characteristic of the base field is zero or large enough, this enables us to
give optimal algorithms (up to logarithmic factors) for the composed sum and
multiplication. These algorithms are based on formulas expressing the power sums
of the roots of f ⊗ g and of f ⊕ g in terms of those of f and g. They use mainly
multiplications, inversions and exponentiations of power series, for which nearly
optimal algorithms are known [9], [17, Section 13.9], [27, Section 9.1]. We give a
similar algorithm in arbitrary characteristic for the computation of the composed
multiplication.

We also propose a fast algorithm for computing the diamond product. The key idea
of our approach is to express the linearly recurrent sequence of the power sums of the
roots of f �H g as the traces of Hs in the quotient algebra k[X,Y ]/(f(X), g(Y )).
The computation of these traces is based on a generalization of an algorithm of
Shoup [25] to the bivariate case. The algorithm we propose improves the previously
known complexity to O(

√
DM(D) +D2) operations in k.
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This algorithm works under no additional assumptions if the base field has char-
acteristic zero. Over a finite field, they work under a mild assumption, which is
satisfied, for instance, if the output f �H g is an irreducible polynomial.

Our results are encapsulated in the following theorem:

Theorem 1. Let f and g be two monic polynomials in k[T ] of degrees m and n
and let D = mn. Then one can compute:

(1) the composed product f ⊗g within O(M(D)) operations in k, if k has char-
acteristic zero or larger than D;

(2) the composed product f ⊗g within O(M(D) log(D)) operations, if the char-
acteristic of k is positive and larger than all the multiplicities of the roots
of f ⊗ g;

(3) the composed sum f ⊕ g using O(M(D)) operations in k, if k has charac-
teristic zero or larger than D.

Suppose H ∈ k[X,Y ] has degree in X less than m and degree in Y less than n.
Then one can compute:

4. the diamond product f �H g using O(
√
DM(D) + D2) operations in k, if

k has characteristic zero or larger than D, or if the characteristic of k is
positive and larger than all the multiplicities of the roots of f �H g.

Note that using Fast Fourier Transform for the power series multiplication yields
O(M(D)) = Olog(D), see [27, Section8.2]. This implies that the algorithms we
propose for the composed multiplication and for the composed product are nearly
optimal, i.e., their complexity is linear, up to logarithmic factors, in the degree D
of the output.

The next table clarifies the state of the art on the questions addressed in this paper.
The arithmetical complexities are stated in terms of the degree D of the output in
the case of two polynomials f and g of equal degree m = n, so that D = m2. The
unstarred entry corresponding to f ⊕ g in arbitrary characteristic is obtained by
the resultant computation (1). The other two entries in the case of the arbitrary
characteristic are valid under the assumptions of Theorem 1.

characteristic f ⊗ g f ⊕ g f �H g

zero or > D O(M(D)) ? O(M(D)) ? O(
√
DM(D) +D2) ?

arbitrary O(M(D) log(D)) ? Olog(
√
DM(D)) O(

√
DM(D) +D2) ?

Table 1. A bird’s eye-view on complexities; the symbol ? indi-
cates our contribution.
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Outline of the paper.

– In Section 2, we propose fast algorithms for the translation between a monic
polynomial and the power sums of its roots. Depending on the characteristic
of the base field, we split the problem into two cases, which are detailed in
Subsections 2.1 and 2.2.

– In Section 3 we use these results to compute the composed multiplication
in arbitrary characteristic and the composed sum in characteristic zero or
large enough, and we present the experimental behavior of our algorithms.

– In Section 4 we address the problem of computing the diamond product
f �H g. We show that it amounts to evaluating the trace form on the
successive powers of H in the quotient algebra k[X,Y ]/(f(X), g(Y )). This
is a particular instance of the power projection problem; we solve it using
a generalization of a “baby-step / giant-step” algorithm of Shoup’s.

– Section 5 presents several applications of these composed operations and
describes two related questions: the fast computation of resolvents and of
Graeffe polynomials.

2. Power Sums and Elementary Symmetric Sums of Roots

The key to our approach is to represent a polynomial by the power sums of its
roots and conversely, to reconstruct the polynomial from these power sums; this
idea is already present in [13]. Newton formulas provide a straightforward way to
make these conversions, but they apply only in characteristic zero (or large enough)
and have quadratic complexity in the degree of the polynomial. In this section, we
describe optimal algorithms (i.e., linear, up to logarithmic factors, in the degree of
the polynomial) for these conversions.

The translation from a polynomial to the power sums of its roots is quite simple
and is based on Lemma 1 below; for the opposite conversion, we distinguish two
cases. In Subsection 2.1 we treat the case of the characteristic zero or large enough,
for which the solution is based on the existence of the exponential of a power series.
Note that in characteristic zero a similar treatment is given in [17, Section 13.8]
and in [4, Section 1.4]. In the positive arbitrary characteristic case and under
some mild assumptions, our solution relies on the Berlekamp-Massey algorithm,
see Subsection 2.2.

Notation. In the rest of this article, we will make use of the following notation:

– Ns(h) denotes the s-th power sum of the roots of polynomial h ∈ k[T ], that is,
the sum

∑
γ γ

s, taken over all the roots of h in k, counted with multiplicities.
– If P is a polynomial in k[T ], we write rev(P ) for its reverse, namely T deg(P )P ( 1

T ).
– The logarithmic reverse LogRev(h) of h ∈ k[T ] denotes the rational power

series
rev(h′)
rev(h)

∈ k[[T ]].

The first result helps us estimate the cost of conversion between power sums and
elementary symmetric sums.
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Lemma 1. Let h be a polynomial in k[T ]. Then, the following formula holds:

LogRev(h) =
∑
s≥0

Ns(h)T s.

Proof. Let γ1, . . . , γD be the roots of h in k. By logarithmic differentiation we have

rev(h′)
rev(h)

=
D∑
i=1

1
1− γiT

=
D∑
i=1

∑
s≥0

γsi T
s

 =
∑
s≥0

(
D∑
i=1

γsi

)
T s.

�

Corollary 1. If h is a polynomial of degree D in k[T ], the first N power sums of
the roots of h can be computed within O(M(max(N,D))) base field operations.

The converse direction is more difficult to handle: while in characteristic zero the
Newton formulas give a one-to-one correspondence between power sums and ele-
mentary symmetric sums, in the positive characteristic case distinct monic polyno-
mials of the same degree may have equal power sums of roots. Consequently, our
treatment will take into account the characteristic of the base field.

The results of the next subsections are summarized in the following proposition.

Proposition 1. Let h be a polynomial of degree D in k[T ].

(1) If k has characteristic zero or greater than D, then the polynomial h can
be computed from the first D power sums of its roots within O(M(D)) base
field operations.

(2) If k has positive characteristic p and if all the roots of h have multiplicities
less than p, then the polynomial h can be computed from the first 2D power
sums of its roots within O(M(D) log(D)) base field operations.

We stress the fact that the algorithm for positive characteristic also applies in
characteristic zero, under no further assumptions on h. However, the first algorithm
is more efficient in this case, since it saves a logarithmic factor.

We now focus on proving Proposition 1. In Subsection 2.1 we study the case of
characteristic zero or large enough. In Subsection 2.2 we address the arbitrary
positive characteristic case.

2.1. The case of characteristic zero or large enough. The exponential of a
power series F with positive valuation over a field k of characteristic zero is defined
by

exp(F ) :=
∑
s≥0

F s

s!
.

If the base field k has positive characteristic p, we define, as an analogue to the
exponential of a power series F ∈ k[[T ]] with positive valuation, the series

exp(F ) :=
p−1∑
s=0

F s

s!
.
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The next lemma expresses the reverse of a polynomial h as the exponential of a series
involving its logarithmic reverse. It translates the reciprocity between logarithm
and exponential into an equality between power series.

Lemma 2. Let h be a monic polynomial of degree D in k[T ], where k is a field of
characteristic zero or larger than D. Then the following formula holds:

rev(h) = exp
(∫

1
T
·
(
D − LogRev(h)

))
.

Proof. Let γ1, . . . , γD be the roots of h in k. From Lemma 1, it follows immediately
that:

1
T
·
(
D − LogRev(h)

)
= −

∑
s≥0

Ns+1(h)T s.

On the other hand, a similar calculation shows that:

rev(h)′

rev(h)
=
∑
i

−γi
1− γiT

= −
∑
s≥0

(∑
i

γs+1
i

)
T s.

As one can easily verify, for a polynomial P ∈ k[T ] with constant coefficient 1,
the formula P = exp(

∫
P ′/P ) holds as soon as k has characteristic zero or larger

than the degree of P . By applying this fact to P = rev(h) in conjunction with the
previous two formulas, we conclude the proof of the lemma. �

Corollary 2. A monic polynomial h of degree D over a field of characteristic zero
or larger than D can be computed from the first D power sums of its roots within
O(M(D)) base field operations.

Proof. (Compare [4, p. 34–35]) By assumption, we know the series LogRev(h) at
precision D, from which we deduce

∫
1
T ·
[
D − LogRev(h)

]
at precision D in linear

time.

Then only the first D coefficients of the exponential can be nonzero. These coeffi-
cients can be computed within O(M(D)) field operations, using a Newton iteration;
see [9]. Finally, the polynomial

h = rev(rev(h)) · TD−deg(rev(h))

can be recovered in linear complexity. This concludes the proof of the corollary. �

This proves the first part of Proposition 1.

2.2. The arbitrary positive characteristic case. We now prove the second part
of Proposition 1. The key ingredient is the following lemma:

Lemma 3. Let h be a polynomial in k[T ] and
(
Ns(h)

)
s≥0

the sequence of the power
sums of its roots. Then, this sequence is linearly recurrent; its minimal polynomial
is

h

gcd(h, h′)
.
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Proof. By Lemma 1, the generating series of the sequence
(
Ns(h)

)
s≥0

is rational,
so this sequence is linearly recurrent. By [16, Lemma 1], its minimal polynomial is
given by the denominator of the irreducible form of the rational series

∑
s≥0

Ns(h)
T s+1

.

On the other hand, if γi denote the roots of h in k, the previous series can be
written

D∑
i=1

(∑
s≥0

γsi
T s+1

)
=

D∑
i=1

1
T − γi

=
h′

h
,

so the denominator of its irreducible form is h
gcd(h,h′) . This concludes the proof. �

Corollary 3. Let h be a monic polynomial of degree D over a field of characteristic
p. Suppose that all the roots of h have multiplicities less than p. Then h can
be computed from the first 2D power sums of its roots within O(M(D) log(D))
operations in k.

Proof. We first show that the algorithm below correctly outputs a polynomial given
its logarithmic reverse. For a rational series S =

∑
i≥0 siT

i in k[[T ]], we denote by
MinimalPolynomial(S) the minimal polynomial of the linearly recurrent sequence
(si)i≥0 of its coefficients.

Recovering a polynomial from
its logarithmic reverse

Input: the first 2D terms of the series LogRev(h).
Output: the polynomial h.

S1 ← LogRev(h) +O(T 2D);
i← 1;
repeat

vi ← MinimalPolynomial(Si);
Di ← deg(vi);
Ri ← LogRev(vi) +O(T 2Di);
Si+1 ← Si −Ri;
i← i+ 1;

until Di = 0;
t← i− 1;
v ← v1v2 · · · vt;
return v.

Let h =
∏
γ(T − γ)µ(γ) be the factorization of h over an algebraic closure of k,

where µ(γ) denotes the multiplicity of the root γ. Since h is defined over a field of
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characteristic p we have that
h

gcd(h′, h)
=

∏
p 6 | µ(γ)

(T − γ),

and by the assumption on the multiplicities µ(γ), the product above is taken over
all the roots of h. Using Lemma 3, the minimal polynomial v1 of the sums sequence
of h will thus equal

∏
γ(T − γ). Since LogRev(AB) = LogRev(A) + LogRev(B),

the series S2 = LogRev(h)− LogRev(v1) is the logarithmic reverse of

gcd(h, h′) =
∏
γ

(T − γ)µ(γ)−1.

Therefore, using Lemma 3 again, v2 equals the product of the linear factors (T −γ)
taken over the set of the roots of h of multiplicity at least 2. Iterating this argument,
we obtain, for all 1 ≤ i ≤ t the formula

vi =
∏

{γ | µ(γ)≥i}

(T − γ).

This shows that h is exactly the product of the square-free polynomials vi.

Let us now estimate the cost of our algorithm. The minimal polynomial compu-
tation in the loop i can be done using the Berlekamp-Massey algorithm, which
has complexity O(M(Di) log(Di)), see [27, Ch. 11,12]. Moreover, by Lemma 2,
computing Ri requires O(M(Di)) operations in k. Using the sub-additivity of M ,

t∑
i=1

M(Di) log(D) ≤M
( t∑
i=1

Di

)
log(D) = M(D) log(D),

this yields a total cost for the iterative steps of O(M(D) log(D)) base field opera-
tions.

Finally, the product of all the intermediate polynomials vi can be computed us-
ing at most M(D) log(t) operations, see [27, Algorithm 10.3]. This is also in
O(M(D) log(D)), since t ≤ D. This concludes the proof of Proposition 1. �

Square-free decomposition. Using the algorithm described in the proof above, we
can actually compute, within the same cost, a square free decomposition (hi)i of
h. To do this, it is sufficient to compute the successive quotients hi = vi/vi+1.
Classically, the square-free decomposition of h is achieved by an algorithm of Yun
[27, Algorithm 14.21] within the same complexity as ours, but Yun’s algorithm
takes the polynomial h as input. It turns out that these two algorithms are closely
related, the successive gcd computations in Yun’s algorithm being easy to translate
in terms of our LogRev series.

As in Yun’s algorithm, if the assumption of Proposition 2 is violated, our algorithm
returns a proper divisor of the desired output, so we can a posteriori detect whether
h has roots of multiplicities greater than or equal to p.

3. Two Useful Resultants That Can Be Computed Fast

The results of the preceding section will help us design optimal algorithms for the
computation of the composed multiplication f ⊗ g and composed sum f ⊕ g of two
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monic polynomials f and g of degrees m and n. These are particular instances of
resultants

(f ⊗ g)(x) =
∏

g(β)=0

βmf(x/β) = Resy
(
ymf(x/y), g(y)

)
,

and
(f ⊕ g)(x) =

∏
g(β)=0

f(x− β) = Resy
(
f(x− y), g(y)

)
that can be computed faster than the general bivariate resultants, for which no
optimal algorithm is known [27].

Our algorithms are based on formulas expressing the logarithmic reverses of f ⊗ g
and of f ⊕ g in terms of those of f and g. Corollary 4 and 5 below provide the
proof of points 1, 2 and 3 in Theorem 1.

3.1. Computing the composed multiplication. Our algorithm for the com-
posed multiplication f ⊗ g is based on the following lemma:
Lemma 4. Let f and g be two polynomials in k[T ]. Then, the following formula
holds:

LogRev(f ⊗ g) = LogRev(f)� LogRev(g),

where � denotes the Hadamard product (that is, the termwise product) of power
series.

Proof. For s ≥ 0, the s-th power sum of the roots of f ⊗ g is
∑
α,β(αβ)s, the

sum running over all the roots α of f and β of g. This sum can be rewritten as(∑
α α

s
)
·
(∑

β β
s
)
, which is the product of the s-th power sums of the roots of f

and of g. This proves that the series LogRev(f ⊗ g) is the Hadamard product of
LogRev(f) and LogRev(g). �

Corollary 4. Let f and g be two monic polynomials of degrees m and n over a
field k and let D = mn. Then the composed multiplication f ⊗ g can be computed
using

(1) O(M(D)) operations in k, if the characteristic of k is zero or greater
than D;

(2) O(M(D) log(D)) operations in k if the characteristic of k is positive and
greater than all the multiplicities of the roots of f ⊗ g.

Proof. We apply Lemma 1, Proposition 1 and Lemma 4 and the fact that computing
the Hadamard product of two series at precision D is linear in D. �

3.2. Computing the composed sum in characteristic zero or large enough.
Let k be a field of arbitrary characteristic and let E ∈ k[[T ]] denote the power series

E = exp(T ),

where exp denotes the exponential defined in Section 2.1. Then the algorithm for
f ⊕ g is based on the following lemma:
Lemma 5. Let f and g be two polynomials in k[T ]. Then
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(1) if the characteristic of k is zero, the following formula holds:

LogRev(f ⊕ g) � E =
(
LogRev(f) � E

)
·
(
LogRev(g) � E

)
;

(2) if p > 0 is the characteristic of k, the following formula holds:

LogRev(f ⊕ g) � E =
(
LogRev(f) � E

)
·
(
LogRev(g) � E

)
mod T p.

Proof. We give the proof in the zero characteristic case; the same arguments apply
mutatis mutandis in the second case, by judiciously truncating the series involved.

The definition of LogRev implies that

LogRev(f ⊕ g) =
∑
s≥0

∑
α,β

(α+ β)s
T s,

the second sum running over all the roots α of f and β of g. The conclusion now
reads ∑

s≥0

∑
i,j (α+ β)s

s!
T s =

∑
s≥0

∑
α α

s

s!
T s

 ·
∑
s≥0

∑
β β

s

s!
T s


and we are done, as the latter equality simply translates the fact that∑

α,β

exp
(
(α+ β)T

)
=
(∑

α

exp
(
αT
))
·
(∑

β

exp
(
βT
))
.

�

Corollary 5. Let f and g be two polynomials of degrees m and n over a field k of
characteristic zero or greater than D = mn. Then the composed sum f ⊕ g can be
computed using O(M(D)) operations in k.

Proof. Once again, this is a direct application of Lemma 1, Proposition 1 and
Lemma 5. �

Experimental Results. We have implemented our algorithm for the composed sum
in the Magma computer algebra system [5]. This choice was motivated by the fact
that, to the best of our knowledge, Magma is the only general purpose computer
algebra system in which implementations of the fastest algorithms for power series
multiplication are available.

We compare the timings given by Magma’s Resultant computation to those pro-
vided by our algorithm. We stress the fact that, as far as we know, the algorithm
implemented in Magma for the resultant has quadratic complexity in the degree of
the output.

Since the complexity estimates are stated in terms of number of operations in the
base field, we choose to experiment on the finite field with 1030 + 57 elements. The
polynomials have equal degrees m = n and their coefficients are chosen randomly;
the output has degree D = m2.

In Figure 1 we draw the complexity curves corresponding both to our algorithm
and to the resultant-based algorithm. The degree of the output polynomial is given
on the horizontal axis; on the vertical axis the time spent by the two algorithms



FAST COMPUTATION WITH TWO ALGEBRAIC NUMBERS 11

0

2

4

6

8

10

12

14

16

18

400 600 800 1000 1200 1400

"Resultant.dat"
"FastSums.dat"

Figure 1. Our algorithm versus the resultant computation.
(Time in sec. vs degree)

is given in seconds. Table 2 gives some running times of our algorithm on input
polynomials for which the resultant computation takes more than 1 h of CPU time.

All the tests were made on the computers of the MEDICIS resource center1 using
a 1.5 GB, 1 Ghz AMD Athlon processor.

m = n 150 200 250 300

D 22500 40000 62500 90000

Time 79.91 229.95 244.03 543.71

Table 2. Computation of the composed sum; time is given in seconds.

4. Computing the Diamond Product

We finally address the general case: computing the diamond product of f and g.
From the data of a polynomial H(X,Y ), of degree less than m in X and n in Y ,
the diamond product is defined as the polynomial of degree D = mn

f �H g =
∏
α,β

(
T −H(α, β)

)
,

where the product runs over all the roots α of f and β of g, counted with multi-
plicities. In this section, we prove that computing f �H g can be achieved within

O(
√
DM(D) +D2)

1http://www.medicis.polytechnique.fr
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operations in k.

4.1. Computations in the quotient algebra. Let Q be the quotient algebra
k[X,Y ]/(f(X), g(Y )). In the rest of this section, we repeatedly use the trace,
which is a linear form defined on Q: the trace of A ∈ Q is defined as the trace of
the endomorphism of multiplication by A in Q.

Our algorithm is based on the following fundamental fact, which is sometimes
referred to as Stickelberger’s Theorem, see [12, Proposition 2.7]: for any A in Q,
the characteristic polynomial of A equals

∏
α,β

(
T − A(α, β)

)
, where the product

runs over all the roots of f and g counted with multiplicities. As a corollary, we
have the following lemma:
Lemma 6. The polynomial f �H g is the characteristic polynomial of H in Q. The
s-th power sum of the roots of f �H g is the trace of Hs in Q.

A first consequence of this result is that the coefficients of f �H g are in k. Also by
Lemma 6, proving the final part of Theorem 1 amounts to giving a fast computation
scheme for the first traces of Hs in Q. This is the object of the following proposition.
Proposition 2. Given N ≥ 0, the sequence

trace(H), trace(H2), . . . , trace(HN )

can be computed within O(
√
NM(D) +ND) base field operations.

We immediately deduce the proof of the complexity estimates in Theorem 1: from
Proposition 1, the number of traces to be computed is at most 2D. Using the
above proposition, this has complexity O(

√
DM(D) + D2). Then Proposition 1

shows that the additional cost of recovering f �H g from the power sums of its roots
is negligible.

Thus, we now concentrate on proving Proposition 2.

4.2. Power projection. Computing the traces of the first N powers of H is a
particular instance of the power projection problem: given a linear form ` on the
k-algebra Q, compute the sequence [`(1), `(H), . . . , `(HN )].

The näıve method consists in computing all powers of H, and then applying ` to
all of them. Anticipating the results of the following paragraphs, we note that this
method has complexity O(NM(D)). We now present a faster solution, based on
ideas developed by Shoup in [23, 25], (see also [6] for another application of these
ideas to the context of polynomial system solving). The dual Q̂ is endowed with a
natural Q-module structure: given A ∈ Q and a linear form ` ∈ Q̂, one defines the
transposed product of (A, `) as the following linear form:

A ◦ ` : Q → k
B 7→ `(AB).

The denomination “transposed product” expresses that the map ` 7→ A ◦ ` is the
transposed of the usual product B 7→ AB.

Using this module structure on the dual space, Shoup proposed in [25] the follow-
ing “baby step/giant step” algorithm for the power projection, which avoids the
computation of all the powers of H:
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Power projection

Input: H in Q, ` in Q̂, N in N.
Output: the sequence [`(1), `(H), . . . , `(HN )].

t← b
√
Nc, t′ ← dN/te.

Hq ← Hq, q = 0, . . . , t
for q ← 0, . . . , t′ − 1 do

cqt+r ← `(Hr), r = 0, . . . , t− 1
`← Ht ◦ `

return [c0, . . . , cN ];

A quick look at this algorithm shows that it requires N evaluations of a linear form,
O(
√
N) multiplications in Q and O(

√
N) transposed multiplications.

We now proceed to inspect the cost of each of these steps: in the following sub-
sections, we prove that the evaluation of a linear form has complexity D, and that
product and transposed product have complexity O(M(D)). This provides the
proof of Proposition 2.

4.3. Representing the linear forms. The quotient algebra Q has a canonical
monomial basis: since f has degree m and g has degree n, then

M = {xiyj , 0 ≤ i < m, 0 ≤ j < n}

forms a monomial basis of Q, where x and y are the images of X and Y in Q.

The linear forms will be given by their coefficients in the dual basis of M, that is,
by the list of their values on the elements inM. Then the cost of a single evaluation
is mn = D operations in the base field.

As a preamble to our algorithm, it is also necessary to compute the trace of all
elements in the basis M.

Let us thus consider i in 0, . . . ,m − 1 and j in 0, . . . , n − 1. By Stickelberger’s
theorem, the trace of xiyj is

∑
α,β α

iβj ; then Lemma 4 shows that this trace is the
product of the coefficients of T i in LogRev(f) and T j in LogRev(g).

The series LogRev(f) and LogRev(g) can be computed at precision respectively m
and n in O(M(max(m,n))) base field operations. Then by the above reasoning,
the value of the trace form on the canonical basisM can be computed for mn = D
additional multiplications.

4.4. Complexity of the product in Q. Due to the very specific form of the ideal
defining Q, we can design a simple and fast algorithm for the multiplication in Q,
with complexity O(M(D)).

Let A,B in Q. To obtain AB in Q, we first compute their product as plain poly-
nomials in k[X,Y ], then reduce this product modulo (f(X), g(Y )).
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Using Kronecker’s substitution [27, Section 8.4], the multiplication of A,B as poly-
nomials in k[X,Y ] reduces to univariate multiplication of polynomials of degree
O(mn) = O(D), so it can be done with complexityO(M(D)). The product C = AB
is a polynomial of degree at most 2m in X and 2n in Y ; we now proceed to reduce
it modulo (f(X), g(Y )).

We first consider C as a polynomial in k[X][Y ]; then the reduction modulo f(X)
simply consists in reducing all its coefficients modulo f(X). This can be done within
O(nM(m)) operations in k; we obtain a polynomial D, which we now see in k[Y ][X].
The second and final step, the reduction modulo g(Y ), is quite similar: it consists
in reducing all coefficients modulo g(Y ), which can be done within O(mM(n))
operations in k.

As bothmM(n) and nM(m) are in the classO(M(mn)) = O(M(D)), our algorithm
for the product in Q uses O(M(D)) operations in k.

4.5. Complexity of the transposed product. We finally address the question
of the complexity of the transposed multiplication in Q: we prove that it has
complexity O(M(D)), just like the plain multiplication.

A general principle, known as the transposition principle [20], already asserts that
these two questions have the same complexity. Our solution does not use the
transposition principle, but sheds more light on the operations associated to the
transposed product.

Given a linear form ` in Q̂, let us consider the bivariate generating series

S(`) =
∑

i≥0,j≥0

`(xiyj)XiY j .

In [6, Proposition 1], it is proved that the series S(`) is rational, and can be written

S(`) =
N(`)

rev(f)rev(g)
,

where N(`) is a polynomial in k[X,Y ] of degree less than m in X and less than n
in Y . This representation underlies our algorithm for the transposed product.

Let A be in k[X,Y ], with degree in X less than m and degree in Y less than n. We
define REVm,n(A), the reverse of A, as follows: assume that A =

∑
Ai,jx

iyj , for
i < m, j < n; then we write REVm,n(A) =

∑
Ai,jx

m−iyn−j . With this notation,
the following proposition shows how the numerator N(`) behaves under transposed
multiplication.
Proposition 3. Let ` be in Q̂ and A in Q. Then the following formula holds:

REVm,n(N(A ◦ `)) = A · REVm,n(N(`)) mod (f(X), g(Y )).

Before proving this proposition, let us see how it answers the question of the com-
plexity of the transposed product.
Corollary 6. Let ` be in Q̂ and A in Q. Then the product A ◦ ` can be computed
in time O(M(D)).

Proof. Knowing the values of ` on the canonical basis M amounts to knowing the
restriction of S(`) to all monomials in M. Thus we have enough information to
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recover N(`), through the multiplication by rev(f)rev(g), within O(M(D)) opera-
tions.

We deduce REVm,n(N(`)) by rearranging the terms of N(`) in linear complexity.
From this we obtain REVm,n(N(A◦`)) using the proposition above; then we switch
back to N(A ◦ `) by another reversion. We finally recover the values of A ◦ ` on
the monomial basis through the division by rev(f)rev(g) in the power series ring
k[[X,Y ]].

We proved in the previous subsection that the cost of a product modulo the ideal
(f(X), g(Y )) is in O(M(D)). This gives the complexity estimate. �

This last corollary ends the complexity analysis of Proposition 2. We finally turn
to the proof of Proposition 3.

By linearity, it is enough to prove the proposition when A is the monomial xayb,
with a < m and b < n.

We decompose the sum S(`) as follows:

S(`) =
∑

i≥0,j≥0

`(xiyj)XiY j

=
∑

i≥0,0≤j<b

`(xiyj)XiY j +
∑

0≤i<a,j≥0

`(xiyj)XiY j

−
∑

0≤i<a,0≤j<b

`(xiyj)XiY j +
∑

i≥a,j≥b

`(xiyj)XiY j

= S1 + S2 + S3 + S4

We study each summand in turn, starting with S1.

We write S1 as a finite sum over j of the terms Y j
∑
i≥0(yj ◦ `)(xi)Xi. Using [6,

Proposition 1] again, we deduce that this series can be written Y jnj/rev(f), with
nj a polynomial in k[X] of degree less than m. Thus S1 can be written N1/rev(f),
where N1 is a polynomial in k[X,Y ] of degree less than b in Y and less than m in
X.

Similarly, S2 can be written N2/rev(g), where N2 is a polynomial in k[X,Y ] of
degree less than n in Y and less than a in X. We keep S3 as a finite sum of
monomials, and S4 is XaY bS(A ◦ `).

We multiply both sides of the above equality by rev(f)rev(g); this yields

N(`) = N1rev(f) +N2rev(g) + S3rev(f)rev(g) +XaY bN(A ◦ `)

We now switch to the reverse of this equality: we substitute (X,Y ) by (1/X, 1/Y ),
and multiply both sides by XmY n. We obtain

REVm,n(N(`)) = N1

(
1
X
,

1
Y

)
Y nf +N2

(
1
X
,

1
Y

)
Xmg

+S3

(
1
X
,

1
Y

)
fg +

1
XaY b

REVm,n(N(A ◦ `))
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Multiplying by XaY b yields the final form of this equality

XaY bREVm,n(N(`)) = N1

(
1
X
,

1
Y

)
XaY n+bf +N2

(
1
X
,

1
Y

)
Xm+aY bg

+S3

(
1
X
,

1
Y

)
XaY bfg + REVm,n(N(A ◦ `))

The degree constraints of N1, N2, S3 then show that all summands are actually
polynomials in (X,Y ), and thus XaY bREVm,n(N(`)) − REVm,n(N(A ◦ `)) is in
the ideal (f(X), g(Y )). The degree constraints on N(A ◦ `) finally imply that
REVm,n(N(A◦`)) is the normal form of XaY bREVm,n(N(`)) modulo (f(X), g(Y )).
�

5. Applications and Related Questions

To conclude this article, we present several situations where composed operations,
notably composed sums and products, are used. We also mention two questions
somehow similar to composed operations, but for which no optimal algorithms are
known to us.

5.1. Applications.

Algebraic numbers. Algebraically, one may represent an algebraic number by its
minimal polynomial (to distinguish between conjugates, one can use numerical ap-
proximates).

If α and β are two algebraic numbers represented by their minimal polynomials f
and g, the sum α+β is represented by one of the irreducible factors of the composed
sum f ⊕ g. Similarly, the product αβ is represented by one of the irreducible
factors of the composed multiplication f⊗g. Thus the resultant methods described
in [11, 18] should be replaced by our faster solutions.

The algorithms descibed in this paper also adapt to operations over algebraic func-
tions and series as it suffices to operate with a base field of the form k(z). As a
matter of fact, formal ideas similar to the ones developed in Section 3 prove useful
in determining the generating series of walks over the half-line determined by a fixed
finite set of allowed jumps; see the “Platypus Algorithm” [sic] and the discussion
of [2, p. 56–58]. (There the problem is to calculate the minimal polynomial satisfied
by a product α1 · · ·αk of k distinct branches of an algebraic function defined by
P (z, α) = 0.)

Gosper-Petkovšek normal forms for rational functions. In many algorithms for sym-
bolic summation (e.g., [15], [21] and [19]) one has to solve a linear first order dif-
ference equation, the key equation. For example, Gosper’s algorithm for hyperge-
ometric indefinite summation [15] reduces the search for a hypergeometric solution
f of a difference equation f(x + 1) − f(x) = g(x) with hypergeometric right hand
side g to the search of a polynomial solution of an auxiliary equation of a similar
form.

The key routine of this algorithm is the computation of the so-called Gosper-
Petkovšek normal form for rational functions, see for example [27, Section 23.4].
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Apart from gcd and shift computations, this requires the computation of a poly-
nomial whose roots are the differences between the roots of two given polynomials.
This is again a resultant of the particular form discussed in Section 3.

Computing irreducible polynomials. Constructing irreducible polynomials of pre-
scribed degree over finite fields is a difficult and useful task. It is used, for instance,
to implement arithmetic in extension fields. The most efficient algorithm is due
to Shoup [23, 24]: it consists in first constructing irreducible polynomials of prime
power degree, then combining them to form an irreducible polynomial.

In [24], the second step is achieved by a minimal polynomial computation, which
has complexity d(ω+1)/2, where d is the degree of the output and 2 ≤ ω < 3 is the
linear algebra exponent. Using our algorithms for the composed multiplication or
for the composed sum, the cost of this step becomes linear in d, up to logarithmic
factors.

Linear recurrent sequences with infinitely many zeros. A classical result [3] says that
a linear recurrent sequence has infinitely many zero terms if its minimal polynomial
f has a unitary pair, that is, if it has two roots whose ratio is a root of unity.

In [28], Yokoyama, Li and Nemes give algorithms to test this condition, and if so,
to find the order of the multiplicative group generated by the corresponding roots
of unity. The most time-consuming part of their algorithm is the computation of
a polynomial whose roots are the ratios of all pairs of roots of f . This directly
reduces to the computation of a composed product.

Shift of polynomials. In [26], six algorithms for computing shifts of polynomials are
proposed and their complexity is analyzed. A seventh algorithm can be deduced
as a straightforward application of our algorithm for the composed sums, since
f ⊕ (T + a) is the shift polynomial of f by a. In characteristic zero, the complexity
of this algorithm is linear (up to logarithmic factors) in the degree of f , in terms of
base field operations. Yet, the convolution method of Aho, Steiglitz and Ullman [1]
is better by a constant factor.

5.2. Related questions and open problems.

Resolvents. Resolvents are an important tool in Galois theory, notably for the direct
problem of determining the Galois group of an irreducible polynomial f of degree
m. Their factorization patterns help determine the Galois group of f .

For h ≤ m, an example of such a resolvent is the polynomial f+h of degree N =
(
m
h

)
,

whose roots are the sums αi1 + · · · + αih , with 1 ≤ i1 < · · · < ih ≤ m, where
(αi)1≤i≤m are the roots of f . This differs from the h-th iterated composed sum,
since repetitions of roots are not allowed here. Yet, the methods we presented can
help answer some simple cases, as illustrated in the following example.

Let f(T ) = T 7−7T + 3 be the Cartier polynomial introduced in [14], and F = f+3

the polynomial whose roots are all sums of h = 3 distinct roots of f . To prove that
the Galois group of f is not the symmetric group S7, it is enough to check that
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F is not irreducible. The polynomial F has degree 35, so knowing its logarithmic
reverse to order 35 suffices to recover it. The formula

f ⊕ f ⊕ f =
∏
α

(T − 3α) ·
∏
α6=β

(T − (α+ 2β))3 ·
∏

α6=β 6=γ 6=α

(T − (α+ β + γ))6,

enables us to express LogRev(F ) as
1
6
(
LogRev

(
f⊕3

)
+ 2LogRev(f ⊗ (T − 3))− 3LogRev(f ⊕ (f ⊗ (T − 2)))

)
.

Using Lemmas 4 and 5, the last series can be computed from the series LogRev(f)
and exp(T ) to order 35. The polynomial F is then recovered from its logarith-
mic reverse, using the algorithms in Section 2. The CPU time used in the whole
computation is about 300 faster than a direct resultant computation.

A straightforward generalization of this approach for an arbitrary h is not satisfac-
tory, due to the combinatorial explosion of the number of terms involved. A faster
method is presented in [10] and has complexity Olog

(
h2N +N2

)
. It is based on

the following recurrence relation, expressing f+h in terms of f+j , for j < h(
f+h

)h
=

h∏
i=1

((
f ⊗ (T − i)

)
⊕ f+(h−i)

)(−1)i+1

.

Using this formula and the fast conversion algorithms presented in Section 2, the
complexity reduces to Olog (hN). Nevertheless, the degree of the output is N , so
an optimal algorithm for this question has yet to be found.

Graeffe polynomials. Let f be a monic polynomial of degree m and N be a positive
integer. We call N -th Graeffe polynomial of f the polynomial whose roots are the
N -th powers of the roots of f ; note that it has degree m.

This polynomial can be obtained using O(M(mN)) operations in k, by comput-
ing the composed product of f and XN − 1. Note that the same complexity is
announced in [17, Section 13.8]. This complexity is almost optimal with respect
to m, but not to N . On the other hand, the N -th Graeffe polynomial of f is the
characteristic polynomial of XN modulo f . Computing XN mod f has complex-
ity O(M(m) log(N)), which is optimal in N , but then the characteristic polynomial
computation has complexity more than linear in m.

Is there a way of reducing the whole cost to O(M(m) log(N))? If N is a power of 2,
this can be achieved using binary powering, but the general case remains open.
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