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An increasing tree is a labelled rooted tree in which labels along any branch from the root 
go in increasing order. Under various guises, such trees have surfaced as tree representations 
of permutations, as data structures in computer science, and as probabilistic models in 
diverse applications. 

We present a unified generating function approach to the enumeration of parameters on 
such trees. The counting generating functions for several basic parameters are shown to be 
related to a simple ordinary differential equation, 

---~Y(z) = ~(Y(z)), 

which is non linear and autonomous. 
Singularity analysis applied to the intervening generating functions then permits to ana- 

lyze asymptotically a number of parameters of the trees, like: root degree, number of leaves, 
path length, and level of nodes. In this way it is found that various models share common 
features: path length is O(n log n), the distribution of node levels and number of leaves are 
asymptotically normal, etc. 

I n t r o d u c t i o n  

A labelled tree of size n is a rooted tree comprising n nodes tha t  are labelled by distinct integers 
of the set { 1 , . . . ,  n}. An increasing tree is a labelled tree such that  the sequence of labels along 
any branch s tar t ing at  the root is increasing. 

The enumeration of trees is a major  branch of combinatorial  analysis. A classical result due 
to Arthur  Cayley in 1889 states tha t  the number of labelled non-plane trees with n nodes is n n-1. 
For plane trees, the corresponding count is (n - 1)! (~n..~2) since the number of unlabeUed plane 

1 (~,~-2~ n! possible labellings given a fixed traversal  trees is the Catalan number ~ ~ n-1 J and there axe 
order of trees, e.g., preorder. On this and other s tandard  combinatorial  analysis results, we refer 
the reader to the treatises of Comtet  [6], Goulden and Jackson [19], or Bergeron et al. [3]. 

This paper  concerns the enumeration of parameters  on various families of increasing trees. 
The families to be considered axe of two types: (i) non-plane trees, which are taken in the graph 
theoretic sense so tha t  subtrees stemming from a node are not ordered between themselves; 
(ii) plane trees, where a plane embedding is specified so that  subtrees stemming from a node are 
ordered between themselves. Rather  arbi t rary  conditions can be imposed on the node degrees 
tha t  axe allowed. 

D e f i n i t i o n  1 Let ~sr)~=0 be a sequence of non negative integers, such tha t  so ~ 0 and Sr ~ 0 
for some r ~_ 2. The variety of trees associated to ( s t}  and the specification of v~n element of 
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{Plane, Non-plane} is the collection of all increasing trees (plane or non plane depending on the 
specification) with Sr sorts of nodes of outdegree (axity) r for all r. 

The degree function of a variety of trees associated with {Sr} is defined as follows. 

In the plane case: ~b(w) := ~ SrW r. 
r>0 

ttff 
In the non-plane case: ~b(w) := )-'~ 8r--2i-. 

r~0 

The degree function condenses all the information needed for the analysis of tree parameters 
considered in this paper. We denote the coefficients of the degree function ~b(w) by ~r, so that  
~ ( w )  - ~ ~ = ~ r = 0 ~ w  , with ~ = s~ in the plane case, while ~ s~/r! in the non plane case. 
Whenever the collection of node types allowed is finite, ~(w) is a polynomial  In that  case we 
call the variety a polynomial variety and let d denote the degree of ~(w); the integer d is then 
the maximum node degree allowed in the variety, and we call it the degree of the variety. 

Our treatment is directed towards asymptotic estimates via generating functions (GF's).  It 
aims at global results applicable across varieties of increasing trees. In that  sense, it can be 
viewed as a transposition to increasing trees of a programme carried out by Meir and Moon 
who extensively studied so-called simple families of trees, see for instance [32]. However, due to 
the constraint of increasing labels, we are typically facing algebraic differential equations rather 
than plain algebraic equations. The key analytic method employed here is that  of singularity 
analysis, developed by Flajolet and Odlyzko [11], though Darboux's method [6, p. 277] could 
have been employed instead in a few places at perhaps the expense of a little more work. 

As a byproduct, the generating function approach sometimes provides explicit form for var- 
ious tree counting problems, in the case of exactly solvable models. In this way we are able to 
unify several results that  have appeared scattered in the literature. 

For combinatorial counting purposes, we appeal to exponential generating functions: let 
{fn}n_>0 be a sequence of numbers; the exponential generating function (EGF) of the sequence 
is defined as 

f(z) = ~ f,~... (1) 
n_)0 

(Note that  we use the same letters for a sequence and its EGF. We shall henceforth adhere 
to this convention, except for a few explicitly indicated situations where we have to resort to 
different types of generating functions.) 

Our main results are as follows. Fix a variety of trees y ,  i.e., the degree function ~b(w). Let 
Yn be the number of trees of size n in the variety. The EGF of the variety of trees, 

OO 

Y(z) = ~_, y, Z", n! (2) 
n = l  

is defined implicitly by 

ro 
Y(z) dw 

~ w )  - z .  ( 3 )  

The inversion problem is solvable in terms of special functions in a few particular cases of interest 
and we then call the corresponding models solvable. 

Under fairly general conditions--most notably whenever ~(w) is a polynomial, which means 
a finite set of allowed degrees--the equation (3) can be analyzed near its dominant singularity. 
For polynomial varieties, this leads to an asymptotic counting result of the form 

Yn n_(d_2)/(d_l) co dw 
n-~ '~ K .  �9 with P = ~b(w)' (4) 
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where K = K~ is a constant that depends on ~ alone, and d is the degree of the variety. The 
quantity p appears to be always a logarithmic form in algebraic numbers. 

(Technically, this approach is analogous to the analytic method used by Meir and Moon 
in [33], where the authors enumerate recursive trees without unary nodes.) 

Let s[.] be a tree function that admits an inductive definition. Path length or the number 
of leaves in the tree are typical examples, and the precise meaning is explained below. Let S(z) 
be the associated EGF, 

. z l t l  

S(z) = ~ s[tJ i-t-~!, 
tEY i l" 

where as usual It[ represents the size of t. Then it is found that S(z) is expressible as a sort of 
integral transform 

S(z) = Y'(z) F(t) �9 Y'(t)" (5) 

The fact that this transform is determined by the variety y under consideration is materialized 
by the occurrences of Y', while F reflects in a direct manner the inductive definition of the 
parameter s[.] under consideration. 

In solvable models where Y(z) admits an explicit expression, the transform (5) is itself 
explicit. For instance, for binary increasing trees, and an inductive parameter 

it becomes 

4t] = fl,I + 4t,od + s[t,~,hd, 

S(z) = (1 - lz )  2 [fo -{- ~o z ( d F ( t ) ) " ( l - t )  2dt] , (6) 

where F(t) is in this particular case the ordinary generating function of the number sequence 
{fn}, F(t) = ~n fntn. In this way, for solvable models, we can get exact EGF's for parameters 
like path length, number of leaves, and so forth, on the trees. 

However, in general, the solution is asymptotic rather than exact. It consists in viewing 
Eq. (5) as a "singularity transformer". We find, for finite families and for the other classical 
families, that path length is on average An log n, that the expected number of leaves is asymptotic 
to an,  for some constants A, a dependent upon ~b. 

A variation of this scheme in line with Bender's work [2] and with [12, 13] leads to limit 
distributions. For instance, the distribution of nodes in strata of a tree or the number of leaves 
both asymptotically conform to a Ganssian law. 

Most existing works (with the notable exception of Meir and Moon's studies [32, 33]) appeal 
to special recurrence relation, often based on the insertion of a new node, and to the existence 
of closed-form solutions. In contrast, in this work, we resort to a combination of algebraic 
and analytic generating function methods which is versatile and widely applicable. In this way, 
it becomes possible to cast into a unifying framework a number of existing analyses concern- 
ing increasing trees and also to vastly extend the range of problems and models amenable to 
asymptotic analysis. 

1 Classical Tree Models 

We review here some of the models arising from diverse areas that constitute varieties of in- 
creasing trees. 
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Binary increasing trees. Any permutation a of n elements can be written as a word a 
whose ith letter is a(i);  if rain(a) is the minimal element of a,  then, as a word, a can be 
decomposed into Oleft "rain(a) �9 a~ght, where alert ,(arlght ) designates the factors that  appear to 
the left (resp. right) of the minimal element. One can construct a binary tree, T (a ) ,  by repeated 
use of this decomposition: 

The root of the tree T(a )  is rain(a), with the left and right root subtrees being 
constructed recursively as T(oleft) and T(crrlght); the tree associated to the empty 
permutation is the empty tree. 

In this way, we associate bijectively to each permutation of { 1 , 2 , . . . , n )  a labelled tree with n 
labelled internal nodes and n + 1 unlabelled external nodes. 

Equivalently, by eliminating the unlabelled external nodes, we obtain a labelled unary-binary 
tree with two sorts of unary nodes, the left branching nodes and the right branching nodes. Thus, 
the binary increasing trees associated to permutations correspond to a plane family defined by 
so = 1, sl = 2, s2 = 1, so that ~b(w) = 1 + 2w + w 2. From the correspondence, there results in 
particular that  the number of binary increasing trees of size n is n!. 

This construction is recalled in Staxtley's book [35, pp. 23-41] who attributes it "to the 
French". Here, we refer to Fran~on's work (see [15] and references therein) which is based in 
part on earlier methods developed by Foata and Schiitzenberger and in part on a pioneering 
paper [4] written by Burge in 1972. 

Now, a number of classical permutation parameters have direct translations into basic tree 
parameters. For instance, the distribution of the number of nodes on the leftmost branch of 
the tree (i.e., the number of left-to-right minima in the permutation) is given by the Stirling 
numbers of the first kind; the distribution of the number of nodes with a left son in the tree 
(the descents in the permutation) is given by the Eulerian numbers, etc. Some of these classical 
results appear here as corollaries in Section 5 

Binary increasing trees (under the alternative names of heap ordered trees or tournament 
trees) can also be used as a data structure to represent mergeable priority queues, with algorithms 
that can be precisely analyzed, see especially Burge's paper and Vuillemin's survey in [39], or 
[18, 38] for an overview. Finally, this model is of special importance since it is isomorphic 
to the analytic models of standard binary search tree and the Quicksort algorithm, see, e.g., 
[4, 9, 15, 21, 24, 29, 38, 39]. There, the model is equivalent to a splitting process in which n 
elements are split into a "root" and into two subgroups of cardinalities K and n - 1 - K,  with 
the distribution of the random variable K being uniform over its range, P r{K = k} = 1/n for 
all k E { O , . . . , n -  1}. 

Strict binary increasing trees. They correspond to binary increasing trees in which each 
node has either 0 or 2 sons, so that ~(w) = 1 + w 2. By the standard correspondence with 
permutations described above, these trees give rise to alternating permutations, also called up- 
a~d-down, that  are of the form a = a l a 2 . . . a n  with al > a2 < a3 > a 4 " " .  By implicitly 
using such a construction, Desir6 Andr6 obtained in 1881 that  the number of such trees over 
2n + 1 nodes is equal the Taylor coefficient 1 (2n + 1)! [z 2n+1] tan(z). (This number is known 
as a tangent number or Euler number.) The use of this principle in enumerating alternating 
permutations is detailed for instance in [19, p. 169]. 

Recursive trees. Meir and Moon [32] define recursive trees as the variety of non-plane 
increasing trees such that all node degrees are allowed. Thus, the degree function is ~b(w) = 
exp(w). 

1As usual, [z "] S(z) denotes the coe~icient of z" in the expansion of f(z) into powers of z, see [20, ~5.4]. 
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This model lies at the basis of Burge's sorting method of [4]. It was proposed as a statis- 
tical model in philology for problems related to the identification of terminal copies of manu- 
scripts [34]; it has also been used for the legal assessment of chain letters and pyramids [17]. 
Its basic property for applications is that it can be generated by successive insertions of nodes, 
where at each stage each node is taken with equal likelihood as the father of the new node 
inserted. 

All authors have noticed a close connection between reeursive trees and permutations, the 
number of increasing trees of size n being ( n  - 1) !. It is however a little less known (though it 
is already explicit in [4]) that this model is equivalent to that of binary increasing trees by the 
following remarks. 

1). Take a recursive tree of size n. 2). Make it into a special plane increasing tree by 
ordering brother subtrees at each place in the tree from left to right according to increasing 
values of their roots. 3). Chop off the root of the tree and apply the classical rotation 
correspondence [23, Sec. 2.3.2] that transforms a forest into a binary tree. The resulting 
tree is isomorphic to a binary increasing tree labelled on {2, . . . .  n}, itself isomorphic to a 
similar tree canonically labelled on {1 , . . . ,  n -  1}. 

From this correspondence and the observations above regarding binary increasing trees, one gets 
directly that the distribution of root degrees is given by Stifling numbers of the first kind, that 
the distribution of the number of leaves is Eulerian, and that path length is on average ,,~ n log n. 
We rederive these and other properties in Section 5. 

Plane recursive trees. This is a model introduced by Szymaziski [36] and further developed 
by Ma.hmoud et al. [30, 31]. In our terminologyit corresponds exactly to a variety of plane trees 
with degree set ft = {0,1, 2, 3, . . .},  so that r = 1/(1 - w). It also admits a construction 
by successive insertions, where at each stage each insertion slot is taken with equal likelihood. 
Alternatively, each node is selected as an insertion node with a probability proportional to its 
degree. As picturesquely described by Makmoud, this is a propagation model in which "success 
brings success". (Footnote: Some of our results of Section 5 regarding plane recursive trees have 
also been independently obtained by Wen-Chin Chen and Wen-Chun Ni [5].) 

2 Exact  E n u m e r a t i o n  of  Variet ies  

We express here the basic counting problem for varieties of trees in terms of generating func- 
tions. This leads to a few cases of interest--the solvable models--where the generating functions 
are expressible in terms of standard functions. The definition of the generating function of a 
variety y has been given in the introduction, see (2). The following result is a folk theorem. 
Fascinating combinatorial variations around it form the subject of a series of papers by Leroux 
and Viennot [26, 27] regarding the combinatorics of elementary calculus. 

T h e o r e m  1 The exponential generating function Y ( z) of a variety of trees defined by the degree 
function ~ is given implicitly by 

~o 
Y(") dw 

= z. (7) 

Proof .  This can be obtained from standard counting lemmas [19, 35, 40]. (Alternatively, the 
reader could return to underlying recurrences.) In terms of EGFs, forming a forest of k trees 
enumerated by Y(z)  corresponds to the EGF Yk(z) if the forest is ordered (plane case) and to 
Yk(z)/k! if it is unordered (non plane ease). Appending a root with a minimal label to a forest 
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Plane 
d - a r y  

Name Diff. eqn. Explicit solution p 

Plane Strict 
d - a r y  

yP = (1 + y)d 

Non plane Strict 
d - a r y  

y ~ = l + y  d 

yd 
y~ = 1+  d-- ~ 

y(z) = - 1  + [1 -- ( d -  1)z] -1/(d-1) 

d = 2  y ( z ) = t a n z  

d > 2  - -  

Non plane 
unary-binary 

Plane 
unary-binary 9 / =  1 + y + y2 

yl = 1 + y+ y~ / 2 

d = 2 u(~) = ~ t a n  

, : />2 - -  

;) y(z) = ~ ~an ~k--~-z --I- 

1 

d - 1  

lr 1 
d sin 

r (d!) lid 

d sin 

2,rv~ 
9 

1 
Plane "Recursive" y' - y(z) = 1 - ~/1 - 2z 

1 - y  
(Non plane) yl 1 
"Recursive" = exp(y) ] y = log 1 - Z 

Table 1: Some varieties of increasing trees and solvable models. For each type,  we have listed 
the differential equation of the EGF,  the expficit forms available, and the radius of convergence 
which dictates the exponential growth, p-'~, of the family. 

Z OO r enumerated by W(z )  corresponds to the EGF f~ W( t )d t .  Thus, with r  = ~ r = 0  Cru , we 
obtain ) Y ( z ) =  CrYr(t)  dt. 

From there, we derive 

Y'(z) 
Y' ( z )  = r  Y(0) = 0 or r - 1, (8) 

and the result follows by integration. []  

From Theorem 1, there results an explicit expression for the EGF of a variety of trees 
provided the integral f dw/r  is expressible in terms of special functions and its inverse is 
reducible to special functions. This is notably the case for the classical tree varieties described 
in the previous section. 

C o r o l l a r y  1 (i) For binary trees, r  = (1 + w) 2, we have 

Z 
Y ( z ) -  1 - z '  Y n = n ! .  

(ii) For strict binary trees, r  = 1 + w 2, 

Y ( z )  = tan(z) ,  Y2n+l = (2n J- 1)! [z 2n+l] tan(z) .  

(iii) For recursive trees, r  = exp(w), 

1 
Y ( z )  = log 1 - z '  Y'~ = (n - 1)!. 
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(iv) For plane recursive trees, r  -- (1 - It)) - 1  , 

Y ( z )  = 1 -  ~ 2z, Yn = 1 . 3 - 5 . - . ( 2 n -  3) = ( n -  1)! ( 2 n ,  2~ 
2 " - '  \ n - l / "  

P r o o f .  It  only involves elementary integration. 

[Y  dw _ y [Y dw 
arctan(y),  

J0 ( l + w )  z l + y '  J0 l + w  2 

exp(w) = 1 - e  -y,  ( l - w )  -1 - y - : '  

and all the inverse functions are explicitly computable. [] 

The results of Corollary 1 are each well known under one guise or another. See, e.g., [3, 19, 
32, 36, 39]. 

A collection of explicit results is summarized in Table 1. An interesting solvable model whose 
asymptotic behaviour is characteristic of polynomial families is given below. 

EXAMPLE 1. d-ary trees. The class of d-ary  increasing trees corresponds to r  = (1 + w) d. 
(It can be viewed as d-ary trees in which only internal nodes are labelled.) We have 

and Y(z) = - 1  + [1 - ( d -  1)z] -1/(d-1), (1 + w) d = ~ 1 (1 "~- y ) d - l "  

so that  

1 
= - -  whence 

d - l '  
Yn = $1-n(1 + $)" (2 + ~ ) . . . ( n  - 1 + 5) where 

I/. 1 
~.l ~ r(~) ~-~n'~+e" 

(9) 

o 

EXAMPLE 2. Special ternary trees. This is a rather artificial example just meant  to demonstrate 
that  explicit EGF ' s  may arise in unexpected contexts. Take r = w 3 + 6w 2 + l l w  + 6, which 
corresponds to a variety of plane ternary trees with six sorts of leaves, eleven sorts of unary 
nodes, six sorts of binary nodes, and one sort of ternary node. We find 

2 z 2 z 3 z 4 z s 
Y ( z )  = - 2  + ~ 3e2Z - 6 z + 66 ~ + 1158 ~ + 28290 ~-. + 887046 ~.w + &c: 

O 

3 A s y m p t o t i c  E n u m e r a t i o n  o f  P o l y n o m i a l  V a r i e t i e s  

In general, no exact form is available and we have to resort to asymptotic  analysis. Our discussion 
at this point focuses on polynomial varieties. 

A preliminary observation regarding periodicity phenomena is in order here. If ~b(w) is a 
function of wp for some p _> 2, so that  ~b(w) = r  for some power series r we say that  
~b(w) is periodic and the maximum possible p is called its period. Otherwise, ~b(w) is said to be 
aperiodic (and we take p = 1). For strict binary trees the period is p = 2, but for unary-binary 
trees p = 1. For period p _> 2, we have Y(z )  = zY*(zP), for some power series Y*; accordingly, 
the non-zero coefficients Yn are those whose index satisfies the congruence condition n - 1 
(rood p). In subsequent statements,  this restriction n - I (rood p) is implicitly assumed in all 
periodic cases. 
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T h e o r e m  2 
�9 "" + ~o. The number Yn of elements of:); with size n satisfies2for d > 3 

= + p + 0 ( n - 1 - 2 ' ) "  

where 

Let 3; be a polynomial variety associated with the degree function r = Cd wd Ji- 

(10) 

P =  $ - d - l '  r /=  - -  , 

p is the period of r and h2 is as defined in Lemma 2 below. In particular, if r has distinct 
roots, then 

d 1 
. = - l o g ( - r  

j = l  

where the (j are the roots ore and the principal determination of the logarithm is taken. 

P r o o f .  We first determine the radius of convergence p of Y(z); next we analyze Y(z)  in the 
vicinity of z = p; finally we translate the behaviour of Y(z)  into asymptotics of the coefficients 
Y,~ by means of the method of singularity analysis, see [11]. 

Recall that  a dominant singularity is one of smallest modulus. By Pringsheim's theorem [37, 
w we know that one of the dominant singularities is real positive, and this singularity is 
equal to the radius of convergence of Y(z).  

L e m m a  1 Given a degree function r that is polynomial or entire, the dominant real positive 
singularity of the function Y(z),  solution to Y'  = r  and Y(O) = O, is 

fo ~ dy p = r  

Furthermore, i re  is non periodic, then p is the only dominant singularity of Y(z) .  I re  has 
period p > 2, then Y(z)  = zY*(zP), where Y* has a unique dominant singularity at pl/p. 

P r o o f .  The integral is clearly defined since r does not vanish on the positive real axis and 
increases at least like w 2 at infinity. For any y with 0 < y < +co,  the integral f~ dw/r is 
an analytic function of y with a non zero derivative; it is therefore invertible. Thus we find that  
Y(z)  is analytic at least for all real z, with 0 < z < p. Clearly Y(z)  becomes infinite as z ~ p - ,  
so that  p is an actual singular point of Y(z).  

Let zo = roexp(iS), with ro < p. Since Y has positive Taylor coefficients, we have IY(zo)l < 
Y(r0) by the triangular inequality. By a well known lemma, equality IY(zo)l = Y(ro) is possible 
for 8 ~ 0 only if Y(z)  = z=Y*(z p) for some integers a,p with p > 2, in which case 8 = 2mr/p.  
(This in turn implies that  r is periodic.) 

Assume first that  we are in the non periodic case. Thus IY(zo)l < Y(ro). Let rl be a 
positive real such that  IY(zo)l = Y(rl) ;  we have rl < r0 by growth of Y(z)  on the positive real 
axis. Consider the function r solution to r  = ~(r  with r  = Y(rl) .  Then r and Y 
are related by r  = Y(z  - r0 + rl)  since the system is autonomous (i.e., there is no explicit 
dependency of z). From the positivity of the problem (i.e., r we then have IY(z)l <_ r 
Thus the modulus of the solution Y ( z )  is upper bounded by Y(Iz l  - r0 + rl).  In plain words 
a delay in the growth of Y(z)  along a non real ray "propagates" along that  ray. In particular, 
Y(z)  exists along the ray of angle 0 for Iz[ < p - r0 + rl ,  and it is analytic there. 

2For d = 2, the term containing n - I - 6  d isappears  and the error after the first term is exponentially small; for 
d --- 3, the form of h2 given in Eq. ( I0 )  has  to be modified. 
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In the periodic case, a suitable amended form of the argument applies, with the exceptional 
angles being simply the multiples of ~/p. 17 

L e m m a  2 Let r = Co + ' "  ")rCdw d be a polynomial degree function with degree d > 2. Then, 
in a complex neighbourhood of p, the solution Y(z)  of (7) is of the form 

1 Y(z)  = --~--~. H( A(z)) where A(z) = 7/(1 - z/p) s, (11) 

co and H(w) = ~,,,=o h,,~w" is analytic at w = O, 

/ to=l,  hi =--r h 2 =  2dCdCd-2--(d--1)r 1 
dCd' 2d(d + 1)r 2 

Proof .  We start with the expansion of 1/r  as w ~ +o0, 

1 1 r 
r = Cd wd r wd+l ~" 

By integration, we find as Y ~ +o% 

But from 

we have 

f (  dw i~ y-d+1 

r 1 -- CdCd-2 
r + . . . .  

C d - l y - d  (12) 
dr + """ 

ro Y(z) dw fo ~176 dw 
r = z and r = p'  

ffdw 
p - - z =  (z) r (13) 

Therefore, by comparing (12) and (13), we get 

•  . . . . .  ( p -  z). 
ed 

Inverting this relation, leads to-the singular expansion of Y(z) as a function of (p - z) 1/(d-l). 
This process is purely formal. The analytic character of the resulting series t t(w) is easily 

established by means of the method of majorizing series or by observing that 1/r and derived 
functions are analytic at oo. [] 

We return to the proof of Theorem 2. The bare principle of singularity analysis consists in 
applying the following rules, 

n - " - I  1 
Y(z) = (1 - zip) a ::::v [znlY(z) ,,~ p-n p(_-7-2-~-~(1 + O( ) 

Y ( z )  = 0 ( ( 1  - z i p ) " )  = .  [ z " l Y ( z )  = O ( p - " n - " - l ) ,  

inside the local asymptotic expansion of a function which is singular at z = p. These two rules 
are applied to the expansion (11) of Y(z). 

Validity of the process in the aperiodic case is ensured because Y(z) exists in a domain larger 
than the disk of convergence as guaranteed by the two lemmas (see [11]). In the periodic case, 
contributions from the p dominant singularities must be added, which accounts for the extra 
factor of p. 

This concludes the proof of Theorem 2. [] 
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EXAMPLE 3. Strict ternary trees. For the variety of strict ternary trees, we have ~b(w) = 1-~W 3. 
Thus, Y(z)  satisfies 

1 2Y - 1 
1 log(1 + Y) - log(1 - Y + y2 )  + ~ a r c t a n ( - - - ~ )  + ~ = z. 

This relation is not explicitly solvable for Y(z).  However, the singularity is easily determined 
to be p = 2~rV~/9, and 

1 
Y(z)  = _ _  ~ r - - - - ~  + h2(1 - z/p) + 0((1  - z/p) sD) 

- -  

so that 

n'--~ = ~ \ - - /  n -1/2 [1 -- ~ "4- ~ + O(n-3)].  

Full expansions are readily obtained. 1:3 

4 I n d u c t i v e  P a r a m e t e r s  

We show here how a fairly general theory of cost measures on varieties of trees can be developed, 
based on the algebraic and analytic methods used for basic tree enumerations. In order not to 
obscure the line of reasoning too much we have limited the discussion to "inductive maps" 
defined below, and to a particular "elementary" subclass with interesting analytic properties. 

4 .1 E x a c t  G e n e r a t i n g  F u n c t i o n s .  

Def in i t ion  2 A function from trees to complex numbers is called an inductive map if it is 
definable by a relation 

s[t] = f,t, + ~ S[r], 
"root 

for some number sequence {/,}, where the sum is over all root subtrees r of t (noted r or t). 

Given a tree function s[.] and a variety 3:, the generating function of s[.] (over 3:) is 

Siz) ~ zltl = 

tEY ' J "  

Typical examples of inductive maps are tree size (fn = 1), number of leaves (f,, = ~n,1) and 
path length (f,, = n). The GF S(z)is an EGF of cumulated values since n![z=]S(z) = ~ltl=,, s[t]. 

T h e o r e m  3 Let s[t] be an inductive map, 

sit] =/I t l  + Y]  s[r]. 
"rtxt 

The generating function of sit], on a variety y ,  is computable by 

S(z) = Y'(z) F(t) Y '( t ) '  (14) 

where F(z) is defined from {1,,} and y by 
Z n 

F(z) =Y~fnY~-~.. .  (15) 
n~O 
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P r o o f .  The bivariate generating function 

Y(z ,  u) = ~_. us[t]z Itl 
tqy 

is easily seen to satisfy 

Y ( z , u )  = v" y, u s . ~  z_., n ~: + f~ ET=lr  (16) 
V" y.  uln ~ z = z..,,~ n ,~, § f~ r  u ) )  dt.  

The argument is of the same type as that  used for equation (7): the contribution to Y(z ,  u) 
comes either from the root (the first sum), or - -when the root has degree r - - f r o m  one of the r 
root subtrees with multiplicity Cr. 

From equation (16) and the fact that  Y(z ,  1) = Y(z )  and aY/Ou(z ,  1) = S(z) ,  we obtain by 
differentiation 

f S(z)  = F(z )  + S( t ) r  dr. (17) 

Eq. (17) next translates into a linear differential equation 

S'(z)  = F'(z)  + S(z )r  S(O) = O. 

First solve the associated homogeneous equation, which yields S(z) = CY' ( z ) .  Then solve the 
inhomogeneous equation by the variation-of-parameter method, which gives 

foZF' ( t )  S ( z ) = Y ' ( z )  y - - ~ d t .  (18) 

[]  

4 .2  A s y m p t o t i c  E s t i m a t e s .  

Def in i t i on  3 An inductive map s[.] is called elementary when the associated number sequence 
{fn} is of the form 

f,~ = Cn~log~n, 

for some real C, a and non-negative r. The triple (C, a ,  r) is called the parameter of the map. 

T h e o r e m  4 Let s be an elementary map with parameter (C, a, r) defined on a polynomial vari- 
ety y .  Then the average value Sn of s on the elements of:); with size n satisfies asymptotically: 

1. i ra  < 1, then 

- -  1 fo p F'( t)  . Sn ,,~ )~ n with )~ = P y - - ~  at; 

2. i ra  = 1, then 

3. i ra  > 1, then 

,~ ,Xnlog~+ln with )~ = C(8 + 1). 
r + l  ' 

~nn "~ ~n ~ logan with )~ = C ( a + 8). 
o r - 1  
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P r o o f .  The result follows from singularity analysis and from the analysis of Y ( z )  already 
effected in the proof of Theorem 2. We assume without loss of generality tha t  32 is non periodic. 
The major  steps are as follows. 

A. It is a priori clear from growth conditions, namely Sn = O(Ynn a+2) = O(p-nna+l/2),  
that  S(z )  has z = p as a dominant singularity. We must therefore analyse S(z )  locally there. 

B. The modified generating function F(z )  = ~_, f ,  Ynz n is a t t adamard  product (a "termwise" 
product) of Y ( z )  with the ordinary generating function .T = ~_,n~176 fnz  n. With the standard 
notation of t tadamard products (| we have 

F(z)  = ~ ' ( z ) |  

The analysis of F(z)  associated with fn = Cn  ~ logrn is then effected by the following steps. 

~ ( z )  is analytically continuable and has the expected asymptot ic  expansion-- i t  has an 
algebraic-logarithmic singularity--when z ~ 1 in the complex plane. This results from 
classical complex integral representations, see for instance Ford's book [14] or Evgrafov [8, 
p. 1651. 

Hadamard products preserve analytic continuation. (This is Hadamard ' s  celebrated theo- 
rem on composition of singularities by Hadamard products.) 

Hadamard  products preserve algebraic-logarithmic singularities. This theorem is due to 
P61ya, see [41] for a discussion relevant to our goals. 

C. Once the singular behaviour of F is known, the corresponding analysis for S is done me- 
chanically using rules for differentiation, integration, and usual Cauchy products.  The necessary 
expansions are summarized by the following lemma. 

L e m m a  3 I f  s has parameter (C, c,, r) then the singular expansion of S (z )  near p is given by 

S(z)  ,,~ A(1 - z / p ) - l - 6 ~ ) ( z ) ,  z ---+ p, 

where A is a constant and 

1 

r  logr+l 1 

( 1 - - z / P )  1-alO-r$ l---2~l 

i r a  < 1, 

i f a  = 1, 

/ f a  > 1. 

Proof .  First, ~" has an isolated singularity at z = 1 as follows from integral representations [14, 8]. Next, 
F has an algebralc-logarithmic singularity at z = p: by Theorem 2, its coefficients grow as 

T/~6) P-"n~-l+s l~ n~ 

and by the closure theorems discussed by Wilson [41], F(z) has the corresponding singularity. Then, 

1 ( t - - -p)  with A0= C F ( a + 6 + I )  F'(t) ... A0(1 - tip) -a-1-6 log" 1 - t ip  Tip r(6) 

Thus, the integrand in (14) grows like 

nD 1 
A 0 ~ ' ( l o  - t lP)-o l og"  1 - tl-----p' t --+ p, 

and several cases need to be distinguished. 
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1. If tr < 1, then the integral is convergent and we get the statement of the lemma with 

)" 
~= 6~lp " F(t) Y'(t); 

2. if a = 1, then integrating by parts, we get the statement with ,~ = ~op/(r + 1); 

3. if a > 1, then again integrating by parts, we get the statement with $ = $op/(a - 1). 

This completes the evaluation of S(z) near p and the lemma is established. 17 

From the last lemma and singularity analysis applied to S(z), the proof of Theorem 4 is in 
turn completed. []  

Theorem 4 admits  a number of extensions. For instance, the same methodology accommo- 
dates exponentially decaying fn like 0nn a, with 0 < 1, boundary condition terms like ~n,0 or 
~n4, and any finite linear combinations. In all these cases, and more generally whenever the 
generating function ~ '(z)  is analytic in a disk tha t  properly contains the unit disk, the formula 
of case 1 of Theorem 4 applies. Quantities fn that  are asymptotical ly equivalent (rather than 
equal) to n a logrn are also amenable to these methods. 

5 Characteristics of Increasing Trees 

The estimates presented here il lustrate direct consequences of the theorems and methods intro- 
duced in the last section, when specialized to a few classical tree parameters .  This concerns 
statist ics on pa th  length, mean number of leaves, and root degree. 

In addition, extensions of the method lead to asymptot ic  probabil i ty distr ibutions for levels 
and number of leaves, which are proved to be Gaussian in the limit. 

5 .1  P a t h  l e n g t h  

Path  length of a tree t is by definition the sum of the distances of all nodes in t to the root 
of t, distances being measured by number of nodes 3 on the connecting branch. An alternative 
inductive definition is thus 

s[t] = Itl + ~ s[r]. 
" t ' ~ t  

Path  length is directly amenable to techniques of the last section, and in this case, function F 
introduced in Theorem 3 takes the explicit form F(z) = zY~(z). 

T h e o r e m  5 Let the variety of trees y be defined by the degree function qL The generating 
function of path length S(z) is given by 

S(z) = r ' ( z )  fo" 
Y'(t)  + tY"(t)  

Y'( t)  dr. 

Asymptotically, for a polynomial variety of degree d, we have 

- -  _ l og  n 
S~ Sn _ ( ~ + l )n log n + C n + O ( nmi~(o,2s_ l ) ) ' Y. 

with 
1for' [ Y ' ( t ) 6_+ .1 ]  c=-1-r l + , y - ~  1-t/oldt' 

where r is the logarithmic derivative of Euler's r function. 

Spath length is sometimes defined by measuring the distance to the root as the number of connecting edges. 
This variant of path length, s*[t] satisfies s*[t] = s[t] - It[, so that ~ -- ~ - n. 
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P r o o f .  A direct application of Theorem 4 to the case fn = n, plus some extra  care for the 
subdominant terms. []  

C o r o l l a r y  2 (i) For binary trees, ~b(w) = (1 + w) 2, we have 

S,  = 2n logn  + (27 - 3)n + 21ogn + 27 + 1 + O(1/n). 

(ii) For strict binary trees, r = 1 + w 2, 

_ _  ~2 7f4 ~ 2  ~ 4  

S n = 2 n l ~ 1 7 6  36 7-"~ )+O(1/n)" 

Oil) For recursive trees, r = exp(w), 

- -  1 
S,~ = n l o g n  + 7n + ~ + O(1/n). 

(iv) For plane recursive trees, r = (1 - w) -a,  

1 7 +  1 1 21og2 + 7 
Yn = ~ n l o g n +  ( l og2+  ~ - - ) n -  _ l ~  4 + O(1/n). 

P r o o f .  The GF S(z) is determined by integration, and we find the four expressions: 

2 1 o g ( 1 - z ) - l - z  1 fo~( l+2t tant)dt ,  l o g ( l - z )  -1 ,  2 z + l o g ( 1 - 2 z )  -1 
(1  - z) 2 ' cos 2 z O -  ~ 4(1 - 20 ' /2  

This corresponds to more or less complicated explicit forms, e.g. S-~ = nHn for recursive trees 
and the asymptotic forms follow by singularity analysis. [7 

Va r i ance .  From equation (16), we can compute the variance of a general inductive map 
by 

~2 [z"]~y(z, 1) 
- + S .  - S .  2. 

Y. 
The second derivative is obtained in a way similar to the first one, 

0 2 �9 n ' ( t )  ~-u2 Y(z, 1) = Y'(z) ~ + r a. 

where 
Z n 

t t(z)  = ~ Ynfn(fn - 1)~ .  = Y(z)  | (~'(z) | Jr(z) - ~r(z) ). 
n 

From this equation, using the same arguments as in the proof of Theorem 4, it is possible 
to attain a classification of the possible variances in the polynomial case, and a similar but 
complicated process would yield moments of higher order. 

In the particular case of path length, we have fn = n, and 
Z n 

H(z) = ~_, n(n - 1)Yn~. I = z2Y"(z), 
n>_o 

so that  ~ ( z ,  1) reduces to 

[ z  2tr"(t) + t2Y"(t) + r )S2(t) 
Y'(z) dt. .to Y'(t) 

This has a singularity at p, and in the polynomial case, the local behaviour yields the following. 
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C o r o l l a r y  3 The variance of path length on a polynomial variety y is asymptotic to An 2, with 

A = ~b(5 + 1)(5 + 1)(25 + 4 - 2__.CC) _ ~b~( 5 + 1)(5 § 1) 2 + 2(5 + 1)(5 + 2) - 4--C-C + 5 +____22 
p p p2 , 

and C as in Theorem 5. 

This result is well known in the case of quicksort and path length in binary search trees for 
which A = 7 - 2 ~ .  

5 .2  N o d e  S o r t s  

The next example shows a parameter that does not strictly speaking falls in the general category 
treated by Theorem 4, though exactly the same method of proof applies. 

T h e o r e m  6 Let s[t] be the number of nodes of outdegree i in a random tree t of size n from a 
variety defined by ~b(w). With ~i = [wi]~b(w), the generating function of s[.] is 

S(z) = d~iY'(z) L ~ 
Yi(t)  
r--w) dt. (19) 

For a polynomial family, the mean number of i-nodes is 

S'--~ = Ain[1 + O(n- ' ) ]  where Ai = -~- [ P  Yi( t)  " p Jo Y---T'~ dr" 

P r o o f .  The parameter s[t] which represents the number of nodes of degree i satisfies 

s[t] = ldegree(root(t))=i + E s[u]. 
uo (~  

Hence, the integral equation for the EGF S(z): 

S(z)  = r LZY i ( t )d t  + LzS(tlr  

whose solution is 
yi( t )  

S(z)  = *iY'(z)  -- L"  at. 

Tile dominant singularities of S are therefore those of Y, and the singular behaviour at p is 

~p Y (t) 

the integral being convergent. From there we get the coefficients via singularity analysis. [] 

C o r o l l a r y  4 (i) For binary trees, q~(w) = (1 + w) 2, the ezpeeted numbers of nodes of degrees 
0,1, 2 are equal to 

n + l  n + l  n - 2  
3 ' 3 ' 3 

(ii) For recursive trees, ~(w) = exp(w), the expected number of nodes of outdegree i is asymptotic 
to 

1 
)tin where Ai = 2i+1. 

(iii} For plane recursive trees, ~b(w) = (1 - w) -1, the ezpected number of nodes of outdeeree i is 
asymptotic to 

2 
Ain where Ai = 

(i + 1)(i + 2)(i + 3)" 
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Proof .  For binary trees, the result follows by elementary integration. (For strict binary trees, 
the problem is degenerate!) For the other two cases, one estimates simultaneously all the Ai by 
means of their ordinary generating function, A(z) -- ~ i  Ai zi. 

For recursive trees, we find 

A(=) = ~ Z i f o l ( 1  1 at i=o ~.w - t) log / 1 - t 

1 ( 1 -  0 [T2=X] 1 1 
= fo (T--ty dt -- L2_--7-/- j o -- 2 - ~" 

For plane recursive trees, we find 

h(~) = ~0 
1[2 Vg~-- 2t 

1 - x (1  - V T - : ~ )  dt 
(1  - z )  ~ 1 3 z  - 2 

- z ~  log ~ + 2z----5--. 

D 

The result for binary trees is of course classical. For recursive trees, the result appears in [1, 
Thm 3.3] in the combinatorial literature but seems to have been first noted by Gastwirth [16]. 

5.3 R o o t  d e g r e e  

Let r[t] denote the root degree of tree t. Then the EGF of trees with root degree j is clearly 

Cj fo z YJ(t) dr. (20) 

The bivariate generating function for the distribution of root degree in trees in a variety y is 
defined by 

l a l  

R(z,,,) = ~ u ' ( ' )~ .  
tEY 

T h e o r e m  7 The bivariate generating function of root degrees, R(z, u), is given by 

R(z,u) = r 

Let S(z) = Ru(z, 1) and T(z) = R,,,,(z, 1) be the generating functions of the first and second 
factorial moments of root degree. Then 

~zS(z) = Y(z )~ logY' (z )  

~ T ( z )  = ~,~" d~z--~-logY'(z) 
(21) 

For a polynomial variety of degree d, almost all trees of size n have root degree equal to d. 
The probability r , j  that a tree of size n has root degree j ,  with 1 < j < d, is 

7rnj '~ otjn -l+(j-1)~ with aj - pr r(~) 
oJ -1 r(j6)" 
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Proof .  The bivariate generating function follows from (20). For computational purposes, it is 
advantageous to deal with ~zR(z, u) from which the forms of S and T follow. 

The case of polynomial varieties results immediately from singularity analysis. [] 

Coro l l a ry  5 (i} For recursive trees, ~b(w) = exp(w), the number of trees with size n and root 
degree k is sn-l,k. The mean root degree is H.-1.  

(ii} For plane recursive trees, r = (1 - w) -1, the number of trees with size n and root 
degree k is 

(2n - 3 - k)! 
2n- l -k(n - 1 - k) [" 

The mean root degree is v/'~'-n + 0(1/ .  

P roof .  The theorem provides the generating functions 

( 1 -  z ) l - ~ -  1 and 1 -  ~ / 1 -  2z 1 -  U log ( l_  u + u ~ / l _  2z), 
u - 1  u U 2  

from which the results are deduced. [] 

The result for recursive trees is classical, at least under equivalent formulations (see the 
section on models). The mean for plane recursive trees constitutes Thin 1 of Mahmoud et al.'s 
paper [31]. The distribution result appears to be new and the expression is related to ballot 
numbers. 

5.4 P ro f i l e s  o f  t r e e s  

Consider the quantity Lnk representing the expected number of nodes at depth k on all trees of 
a variety y with size n. (By convention the depth of the root is taken to be 0.) For fixed n, the 
sequence {Ln,k}~=0 describes the mean "profile" of trees in the variety (see [32]). Let L(z, u) be 
the bivariate generating function, 

L(z,.)= 
n,k>_O 

T h e o r e m  8 The bivariate generating function L(z, u) of node levels satisfies 

L(z,.) = W'( t ) )  dr. 

Let fl,~ be the depth of a random node in a random tree of y with size n, i.e., 

Lnk 
Pr(f~. = k) = F-,k Lnk" 

For a polynomial variety of degree d, the mean Pn and the variance a~ of ~2. satisfy 

p n = ( 8 + l ) l o g n + O ( 1 )  and = + 1) logn + 0(1) .  

The distribution of f~. is asymptotically normal, 

(fin - #n) la .  ~ N(0; 1), 

(22) 

in the sense of convergence in distribution. 
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P roo f i  Define s[t], the level polynomial of a tree t, to be the sum ~'~v udepth(v) taken over all 
nodes v of t. Then s[t] is inductively defined by 

1 if It[ = 1 
s[t] = u ~ s[r] otherwise. 

"rv<$ 

Algebraically, the generating polynomial Ln(u) = ~ k  L,,k uk behaves like the expectation of an 
inductive parameter. Using the same reasoning as for counting trees in Section 2 or for inductive 
maps, we get the equation 

L(z, u) = Y(z)  + u fo z L(t, u)r dt, 

which translates into a linear differential equation 

~---~L(z,u) Y ' (z )+ uL(z, L(O,u) = 1. 
, d?t(Y(z))Yt(z) 

= u) ~ , 

Integrating the homogeneous equation first, we get the solution 

exp(u log Y'(z)) = (Y'(z))~. 

The integral form of L(z, u) is then obtained by the variation-of-parameter method. 
In the case of a polynomial r using Lemma 2, we determine 

1 
log Yt(z) = (~ + 1)log 

1 z / p  
- -  + C + 0[(1 - z/p)26]. 

A theorem of Flajolet and Soria [12] states that a bivariate scheme of the form exp(uL(z)) for 
some function L(z) with a dominant logarithmic singularity induces Gaussian distributions in 
the asymptotic fimit. It applies here to (Y'(z)) u = exp(ulog Yt(z)). 

In the case of L(z, u) in Eq. (22), the integral is convergent for u in a complex neighbourhood 
of 1 and Izl _< p so that it plays the role of an unessential perturbation. A simply amended form 
of the main result of [12] then applies. [ ]  

The result for Pn is also consistent with the estimate of expected path length which is 
precisely npn + n. 

C o r o l l a r y  6 (i) For binary trees, r = (1 + W) 2, we have 

L(z,u) = ( 1 -  z) - 2 ~ -  ( 1 -  z) -1 
2u - 1 

Pn = 21ogn + 2"l - 4 + O(logn/n), 

6 0  For ,',cursive trees, r = exp(w), 

271" 2 
2 21ogn + 4 + 2"/ + O(log2n/n). O" n _-- --~ 

L ( z , u ) -  ( l - z )  - ~ -  1 

~r 2 
2 log n + 7 - --~ + O ( 1 / n ) .  pn = logn + 7 - 1 +  O(1/n), an= 
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(iiO For plane ~cu~sive  t,~es, ~ ( ~ )  = (1 - ~,)-~,  

L O ,  ~) = (1 - 2~ ) - " /~  - (1 - 2~)~/~ 

l + u  

1 7 1 2 2 l l o g n  + 7 ~,~ = ~ logn  + ~ + log2  - ~ + O(logn/n), a,, = ~ + log2  
1 ~2 
4 8 

+ O(log2n/n). 

For binary trees, the distribution has been given by a number of authors independently in 
the 1980's, see [28]; for recursive trees, it was found by Devroye [7] using the theory of records. 
Both explicit forms and limit distributions are derivable from these GF's. For recursive trees 
we find the coefficients sn,k+l, while the two other ones give rise to convolution of Stirling 
numbers of the first kind. (We recall that the Stirling number of the first kind, snk is defined as 
[u k] u(u + 1)(u + 2 ) . . .  (u + n -  1); Stirring numbers are ubiquitous in this category of problems.) 

5.5 D i s t r i b u t i o n  o f  t h e  n u m b e r  of  l eaves  

In order to approach the distribution of the number of leaves and more generally of nodes by 
sorts, we introduce 

~(u; y) = ~ ~rUry r, 
r----0 

a series involving in general infinitely many indeterminates, (ur). Let N(no, nx,...) be the 
number of trees of size n (in the variety defined by ~b) that have no leaves, nl nodes of degree 1, 
etc. The multivariate GF 

zno+nt +... 

YCu;z)= ~ N(no, nl,. . .)u~u'~a... (no+nl +.. .)!  
n O ~ l l l  ~ . . .  

satisfies 
[ Y(u;z) dt 
Jo ~(u; t) = z. 

This function condenses all the distribution information of all node sorts in a variety. In 
particular, it specializes to the bivariate GF for the distribution of the number of leaves, 
Y(u; z) = Y(u, 1,1 , . . .  ; z). 

T h e o r e m  9 The bivariate generating function for leaves Y(u; z) is defined implicitly by 

fo Y dt 
(u - 1)~b0 + q~(t) 

~ Z .  

For random trees of size n in a polynomial variety, the number of leaves tends to a Gaussian 
limit (in the sense of convergence in distribution). 

Proof .  (Sketch) The argument for the Gaussian limit is based on analyzing the "perturbation" 
caused by the variable u in the non linear differential equation Y' -- ~(Y), with u near 1. We 
consider some fixed u close enough to 1. 

First, the radius of convergence of Y(u;~z) is 

fo ~ dt P(")  = (,, - 1 ) ~  + ~(t)" 
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We have 

p(u)-p(1) / : , ( ,  1) 
= r 1+ r 
: ~176  + (u . . . . .  " (23) 

The singular exponent of Y(u;  z) is still ~, and we have 

Y(u;  z) = H0(u)(1 - zip(u))  -s  + Hi(u)  + etc. 

By a suitable use of majorizing series arguments, a uniform version of this expansion is estab- 
fished, when u lies in a real neighbourhood of 1. It is known from Bender's work that  similar 
analytic schemas lead to Gaussian laws [2]. Here, we use a slightly stronger form of Bender's 
theorem discussed in [13]. In this way, the result is estabhshed. []  

Let Y,,k denote the number of trees of size n having k leaves in variety y .  

C o r o l l a r y  7 (i). For binary trees, r = (1 + w) 2, Yn,k is a pseudo-Eulerian number, 

.~tan(~z)  + 1 
Yn,k = n!tukznlY(u; z) where Y(u;  z) = r ~ - ' ~ a n ( ( z f  1 and ~ = (u - 1) 1/2. 

(ii). For recursive trees, Yn,k is a shifted Eulerian number, 

1 - u  
Y.,k = An-l ,k = (n -- 1)![ukz '~-1] (U -- 1 + 1 -- ueZ(1-~) )" 

(iii). For plane recursive trees, Yn,k is a second order Eulerian number, 

n ! [ u % " ]  c(ue 2) oo 
Y,,k = - u -  1 - C ( u e - ' ) ,  where C(z)  = ~ n"-i--n! 

t t ~ l  

is Cayley's function. 
In all three cases, the distribution is Gaussian in the limit. 

P r o o f .  The generating functions follow from straight integration. In the case of recursive trees, 
we get a modified GF for the Eulerian numbers in the form 

1 - u  
Y(u;  z) = log 

1 - ueZO-~)" 

For plane recursive trees, we arrive at second order Eulerian numbers (for a definition, see [20, 
p. 256]). Cayley's function arises through inversion of Ce c = z. [] 

The result for binary trees is classical. The one for recursive trees was found independently 
by several authors, an early reference being [34]. Mahmoud et al. [31] discovered the connection 
with second order Euleriaa numbers. The EGF given above does not seem to have appeared in 
the literature however. The Gaussian law in this case is in [31] where it is derived from limit 
theorems on Pdlya urn models. 

Similar limit distribution results hold for other sorts of nodes, l ike/-nodes.  
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6 E x t e n s i o n s  

Results in this paper can be extended in various directions. On the algebraic side, variants of 
our basic algebraic schemes may be considered. On the analytic side , we may treat varieties 
defined by degree functions that are either entire or have singularities at a finite distance. 

6 .1 A l g e b r a i c  S c h e m e s  

The basic scheme of Thin. 1, 

f r(~) -- ~(r(O)dt, 

arises with ~ being rather generally the GF of a "species" of structures in the sense of Joyal [3, 22]. 
For instance, we can fit into our algebraic framework, the cases of 

1 
~(w) = 1 + log ~ ,  ~(w) = tan(w). 

The first case corresponds to "mobiles" where subtrees dangling from a node are arranged in 
cyclic order and thus constitute a freely rotating cycle. The second case corresponds to "festoon" 
trees in which labels of the sons of a node go up an down, forming an alternating permutation. 
(Of course the increasing tree property is still assumed in these constructions.) 

The algebra of such series is indistinguishable from that of increasing trees varieties consid- 
ered earlier. The analysis, as we discuss below, can be treated along similar lines. 

6 .2  A n a l y t i c  S c h e m e s  

The principles of analysis employed generalize to either entire functions or functions with sin- 
gularities at a finite distance. The argument runs as follows. 

The singular behaviour of Y(z) is obtained by inverting the singular expansion of 
f dw/~(w) near its smallest positive singularity. The asymptotic form of the coe~i- 
cients of Y (z) derives from that singular behaviour by means of singularity analysis. 

Assume that ~(w) which has positive coefficients becomes singular at a :,  0. We have either 
a = +oo or a ~ cr depending on whether ~b is entire or not. In both cases, however, the 
argument employed in the proof of Thin. 2 generalizes, and the radius of convergence of Y(z) is 

fo ~ dw (241 P = ~(w)" 

Eq. (24) is consistent with what we have found (see Cot. 1) for recursive trees, where ~(w) = 
exp(w) so that  a = +or and for plane recursive trees where ~b(w) = (1 - w) -1 so that a = 1. 
In these two cases, we have 

,~0 "}'r ~01 1 p= e-~'dw= l and p =  ( 1 - w ) d w =  ~. 

Singu la r i t y  a t  a f ini te  d i s tance .  Consider the typical case of 

1 
d~(Y)- p (y ) ,  
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with P a polynomial. In this case, the equation P ( Y ) Y '  -- 1 has the integral Q ( Y )  = z, 
with Q~ = P and Q(O) = O. Thus Y is an algebraic function and its coefficients are a priori of 
the asymptotic form Cfl-nn p/q for some rational p/q. The singularity of Y ( z )  is at 

p = fo ~ e(y)  dy = Q(~), 

where a is the smallest positive root of P.  The singular expansion of Y is then found by inverting 

J~iz) P p - z = (y) dy = Q(a) - Q(Y(z ) ) .  

In the generic case, Pl(a)  ~ O, and we obtain the singular expansion 

12(p- z) 
Y ( z )  = a - V " ~ - ~  I- O(p - z), z -~ p, 

from which we deduce 

Y. ~ -,.,,n-3/2,1 = V ~ P  t +O( l /n ) l .  R--T 
Thus the particular explicit form obtained for plane recursive trees is indeed attached to a fairly 
general scheme. 

EXAMPLE 4. Special plane trees and festoon trees. As an illustration, consider plane recursive 
trees in which nodes degrees are all multiples of a fixed integer t, so that  r = (1 - wt) - I .  In 
this case, the equation for Y, which is Y~(1 - y t )  = 1 leads to 

y t + l  
Y - - - ~ z .  

t + l  

The trinomial equation is solvable by Lagrange inversion, from which we find 

(.,),  (n(,:i)) 
Y,~t+l = (t + 1)" 

a formula that generalizes that of plane recursive trees and is also in agreement with the asymp- 
totic estimates above. 

Festoon trees already discussed correspond to r = tan(w), so that  cr = ~. We find 
p = 4 '  and asymptotically, by a direct extension of the situation of rational functions, Yn/n! ,,, 
C(4 / r )nn  -312, for some C > 0. [] 

EXAMPLE 5. Mobile trees. They correspond to r = 1 + log(1 - w) -1. The asymptotic 
analysis takes us a little out of beaten tracks. The radius of convergence p is 

~OOO g--t oo ( -  1)n-_...._._~ 1 
p =  l + t d t = 1 ! - 2 ! + 3 ! - 4 ! +  . . . . .  eT+e~)'~,=l n . n !  ~ 0"59634 73623" 

The local expansion of Y(z )  is provided by inverting the famous divergent series of Euler, 

1 1 o ( ( p -  z)(loglog(1 - z /p ) - l )2 ) .  
Y ( z )  = 1 - (p - z)log 1 - z /p  + (p - z) loglog 1 - z /p  + log(1 - z /p)  

This type of singular expansion itself necessitates the full power of singularity analysis, and we 
find 

y n = p l _ n [ 1  1 + 0 ( ~ ) ]  
n 2 log----~ 

[] 
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Entire functions.  
and integer m, when w ~ +0% then 

[r162 dw 1 
p -  Z = j y  dp(w) "~ K e Y Y  m'  

so that  Y ( z )  is dominated by a logarithmic term at z = p, and 

Yn ,~ p_nn_l" 
n! 

The same principles apply. If ~b(w) ,,~ K w m e  w, for some constant K 

(25) 

EXAMPLE 0. Even and Odd Trees. Non plane even trees have all their nodes of even degree, 
so that  ~b(w) = cosh(w). Odd trees have all their non leaf nodes of odd degree, so that  ~(w) = 
1 + sinh(w). The EGF's  are explicitly computable in both cases, and we find: 

Y'Ven(Z) = log tan ~ + , = log [ 3 + 2V~ = e J~z J"  

The corresponding singularities are at 

poad = V~ log(3 + 2V~). 
2 

peven ~ 

The coefficients obey Eq. (25). El 

The example of ~(w) = e ~ - w is treated in full detail by Meir and Moon [33]. Their main 
result, 

Y,~ ~o c~ dw 
-~. ~ P- '~n-l '  P =  e w - w '  

which is Thin. 3 of [33], also matches with our Eq. (25). 

7 C o n c l u s i o n  

We have demonstrated here a fairly general approach to the analysis of tree parameters where 
a basic equation for trees is studied from the point of view of its singularities. Here, we have 
been dealing with a non linear autonomous differential equation or order 1, y i  = ~ (y ) .  

Major characteristic parameters of trees have GF's  that  are expressible in terms of the basic 
GF Y ( z )  by means of transformations (here integrals). Once we view these expressions as 
"singularity transformers", it becomes possible to study a large number of statistical problems 
in a unified manner. In this context, composition theorems for singularities of analytic functions 
prove especially valuable. 

The techniques developed here are not restricted to varieties of increasing trees. Notably, 
Knuth and Pittel 's results regarding union-find trees [25] are amenable to analytic techniques 
based on singularity analysis instead of recurrences, this being done along the very same steps 
as in this paper. 

The perturbation techniques used here in order to derive limit distributions by means of 
bivariate analytic schemes of a general nature certainly deserve further attention. For in- 
stance, some counterparts in linear cases have already proved useful in analyzing distributions 
of quadtrees [10]. Quite clearly general bivariate analytic schemes on differential equations are 
conducive to Gaussian laws under quite a wide range of conditions. 
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