Errata et corrigenda

ANALYTIC COMBINATORICS
by P. Flajolet and R. Sedgewick


Relative to the edition of January 2009,
of which a free electronic version is available at
http://algo.inria.fr/flajolet/books/
June 6, 2010

Cuiusvis hominis est errare,
nullius nisi insipientis in errore perseverare.
— Marcus Tullius Cicero (Oratio Philippica Duodecima).

Thanks to all those who send corrections or detect typos! This will prove highly valuable in preparing the next edition/printing.

P. 1, last display. Eliminate the spurious “,” before the period in the equation giving “31!”.

P. 10, figure caption. “Right: a binary” becomes “Right: A binary”. (Unify capitalization in such figure captions.)


P. 18, footnote. Read: “a reference such as ”.

P. 25, line 2. Get rid of overfull hbox at the end of the line.

P. 31, last paragraph, “known” becomes “known”.

P. 35, two lines after Eq. (30): “great depth” replaces “geat depth”

P. 39, 3rd line of the table in Figure I.6. “5244589437” becomes “52445 89437”. (I.e., insert “,” in source file to separate the 10 digits into two blocks of five digits each.)

P. 42, line -5. Change “of daisy-artichoke-rabbit fame In particular” to “of daisy-artichoke-rabbit fame. In particular”. (I.e., insert period.)

P. 62, line -6. Read as “over an r letter alphabet”.

Manuel Kauers 16/09/2009
Ayla Gafni 24/07/2009
Christopher Hanusa 12/08/2009
Manuel Kauers 16/09/2009

P. 66, line -2. It is perhaps clearer to read as “the characteristic function is”.

P. 67, line -9. Insert a long space (\quad) after the symbol “\implies”.

P. 77, Eq. (80). The figure could be cleaned.

P. 81, three lines below Equation (85). The equation for $\mathcal{H}$ should be “$\mathcal{H} = \mathcal{Z} + \mathcal{Z} \times \mathcal{H} + \mathcal{Z} \times \mathcal{H} \times \mathcal{H}$”.

P. 86, Note I.60; line +2, read as “view $A$”; second display, read as “Useq($B$). [I.e., change italics to calligraphic.]

P. 89, proof of Theorem I.5, last displayed equation. Delete the extra space between $d$ and the vertical bar in “$d \mid n$”.

P. 95, footnote. “Schützenberger” becomes “Schützenberger”.

P. 101. Equation (5) is missing a ‘)’ after $f(\gamma)$. That is, the equation should start as “$\beta \star \gamma = \{ (e(\beta, f(\gamma)) \}$”.

P. 118, title of Note II.11: “the Ehrenfest\textsuperscript{2} model”. This is not a typo, contrary to what several readers think. It is an intended typographical pun, since the work was done jointly by Paul and Tatiana Ehrenfest, husband and wife.

P. 123, Figure II.8. The estimate for “all cycles $\leq r$” should read $\approx n^{n(1-1/r)}$.

P. 123, last paragraph, line -3: “permutation” becomes “permutations”.

P. 124, line -13. Overfull hbox at the end of the line.

P. 125, line -2. Last sentence should begin “Variations of these constructions…”

P. 139, line -1. Read: “$\partial_z A(z)$” [instead of $A(z)$].

P. 142, line 12. In case (i), “$\{\epsilon\}$” becomes “$\{\epsilon\}$”.

P. 145, line -12. Read as “Since the root of a tree”.

P. 158, Equation (10). Replace $E$ by $\mathbb{E}$.

P. 158, line -11. Read the reference as “[205, Ch. X]”. (i.e., add period.)

P. 161, Section III.2.2, line +4. Delete comma after “one has” at the end of the line.
P. 167, line -3. Read as “(e.g., “). (I.e., insert comma and space after “e.g.”.)

P. 169, line-14. Delete the stray comma in the first of the two compositions.

P. 178, Prop III.6: comma missing between Set and Cyc. Thus, read as “where \( \mathcal{R} \) is one of Seq, Set, Cyc.”

P. 186, first displayed equation. In the formula, “\( \cdots u_r a_r \)” becomes “\( \cdots + u_r a_r \)”.

P. 187, line 2 (displayed equation). Change “\( n_r \)” to “\( n_r! \)”.

P. 188, Note III.24, first display. The last given term should be \( f'(g(z))g''(z) \) (but not \( f'(z)g''(z) \)).

P. 188, line-2, regarding Faà di Bruno: “canonized” becomes “beatified”. Note: the MacTutor site (wrongly?) implies canonization. The Wikipedia notice is taken (so far?) as the authoritative source.

P. 189, Example III.16. Line 4 should refer to Figure II.15 of Chapter II (but not to Figure III.15)

P. 200, line-11. Read as \( a(u) = zu + zF(z,1)/(1 - zu) \) (instead of \( a(u) = zu + F(z,1)/(1 - zu) \)).

P. 206, two lines after Note III.36. There is perhaps a spurious space before “intensely”.

P. 206, last line. Read “inclusion–exclusion” (missing en-dash).

P. 207, line 8. Change two occurrences of “\( E \)” to “\( \mathcal{E} \)”.

P. 214, Note III.40, line 4. Read as “marked by \( u \). Setting \( u \mapsto w - 1 \) in \( V \) then gives \( B(z,w) \) as”. Equation (78): replace \( u \) by \( w \) throughout.

P. 230, line 2. There is perhaps a spurious space before “over”.

P. 233, line -8. Consider changing “\( \gamma \) is one-to-one” to “\( \gamma \) is one-to-one (injective)”, as the term “injective” is used in other parts of the book.

P. 238, line +7. Overfull hbox: consider changing the beginning of the line to “for an elementary function \( E(z) \)”.

P. 241. Consider increasing the size of fonts for axis labels.
P. 243, Section IV.3.2, line +6. Read as $|a_n| >_{i.o.} (K - \epsilon)^n$. I.e., change “i.o.” to “i.o.”.

P. 246. Inequality at the bottom, line-2: $\frac{f_{n+1}}{p_{n+1}}$ becomes $f_{n+1}r$.

P. 249, line +9. Read as “for all combinatorial classes associated with iterative specifications”.

P. 249, 3 and 4 lines after the diagram relative to $g \circ f$: Consider replacing “Id” by “Id. (Check for consistency in other parts of the book.)

P. 252, footnote 7: “explicit” becomes “explicit”.

P. 254–255, Example IV.4. Consider replacing “Tr” and $Wa$ by “Tr” and “Wa”.

P. 256, Note IV.26. In the displayed equation, insert a $(-1)^r$ factor after “$C =$”.

P. 262, line -1: “p. 349)” becomes “p. 349.)”.

P. 264, paragraph “Pure periodicities”, line +8: “or order” becomes “of order”.

P. 265, line -9, first sentence of last paragraph before I.32: “some open problem” becomes “some open problems”.

P. 269, Note IV.36. Replace “$S(r)$” by $S_r$.


P 285, beginning of second paragraph. Read as “the quotient of two functions”.

P. 286, line -16, third sentence of last paragraph before bibliographic notes: “appreciably more complicated that poles” becomes “appreciably more complicated than poles”.

P. 294, line -12. Add comma: “a neighbourhood of $\sigma_2$”.

P. 296, line +4 of Example V.1. Read as “and belong to the unlabelled universe ($C$) or to . . . ”. (I.e., replace the first occurrence of “labelled” on that line by “unlabelled”.

P. 298, line -16. It’s preferable to read as “corresponding to $S(z) = z^2 + z^3 + z^5 + \cdots$.” (Indeed, $S(z)$ is defined on the previous page, whereas $G(z)$ is from the more general discussion on p. 294.)

P. 302, line +2 of Proof. Read as “any dominant pole $a$”. (I.e., delete comma.)

P. 303, end of long paragraph, middle of page. Insert period after “and so on”.

Christopher Hanusa 12/08/2009
Manuel Kauers 16/09/2009

Christopher Hanusa 12/08/2009
Manuel Kauers 16/09/2009

Ayla Gafni 24/07/2009
Manuel Kauers 16/09/2009

Mikloș Bóta 05/12/2009
Manuel Kauers 16/09/2009
Manuel Kauers 16/09/2009
Ayla Gafni 24/07/2009

Manuel Kauers 16/09/2009
Christopher Hanusa 12/08/2009
Ayla Gafni 24/07/2009
Manuel Kauers 16/09/2009
P. 308, footnote 3. Delete spurious comma and replace by a closing parenthesis: \( \{\pi\} = 0.14159 \ldots \) becomes \( \{\pi\} = 0.14159 \ldots \).

P. 310, Equation (27): \( e^{-2y} \) becomes \( e^{-y \log 2} \).

P. 310, line -3, last displayed equation: error term should be \( O\left(\frac{\log n}{\sqrt{n}}\right) \).

P. 311. First displayed equation should read \( \Phi^*(s) = -\frac{\Gamma(s)}{1 - 2^s} \). (i.e., insert a minus sign before righthand side.)

P. 315, Note V.12. In the first display, write \( \Phi(w) \equiv \Phi(w; \xi, q) \) [i.e., change comma to semicolon], so as to be in agreement with the second display.

P. 318, Note VI.13. “To each pairs” becomes “To each pair”.

P. 318, Section V.4, line +3. Beginning of line becomes “and Motzkin paths”.

P. 322, proof of Proposition V.3, display. \( \mathcal{H}_{00} \) should be \( \mathcal{H}_{0,0} \) (insert comma; 3 occurrences)

P. 322, line -9: overfull hbox (“namely”).

P. 323, line -4. Mismatched parentheses; read: \( L[z^j Q_j] \).

P. 324, Theorem V.5: overfull hbox (“weighted”).

P. 343 third line of proof: space missing between “parts” and “\((i)-(v)\)”.

P. 354, line-12. Read: “each edge exactly once”.

P. 366, three lines after the figure: “spirit of this book,” becomes “spirit of this book.”.

P. 365, line -11. Add a comma after “Temperley [574, p. 66]”.

P. 366, third displayed equation. The middle quantity \( k(uz)^k + (k+1)(uz)^{k+1} + \cdots \) should be changed to \( k(uz) + (k+1)(uz)^2 + \cdots \). The equation becomes

\[
\mathcal{L}[u^k] = k(uz) + (k+1)(uz)^2 + \cdots = (k-1) \frac{uz}{1-uz} + \frac{uz}{(1-uz)^2}.
\]

(The end result is correctly stated.)

P. 368, line . Add a comma before “with” in “and with 3 of these”.

P. 370, line -13. “The initial state (is)” becomes “The initial state is”.

P. 371, line -2. \( EIS \) A000027.
P. 375, line -5. “have have” becomes “have”.

P. 381, Theorem VI.1, second display. Replace $n^{a-1}$ by $n^{a-1}$.

P. 383, Equation (20). In the figure, the bold 0 should be a bold 1.

P. 384, displays of Note V.1 and Note V.4. Parentheses should be made bigger in $O\left(\frac{1}{n}\right)$ and in $O\left(\frac{1}{n^2}\right)$, respectively.

P. 384, Note VI.3. There is a missing alternation of sign in the displayed formula: replace $\lambda_{k,\ell}$ by $(-1)^{\ell}\lambda_{k,\ell}$.

P. 393, Theorem VI.4. “Let $f(z)$ be function” becomes “Let $f(z)$ be a function”.

P. 394 Equs (30), (31) and Fig. VI.7 step 2: $z \rightarrow 1$ becomes $z \rightarrow \zeta$.

P. 394, Equation (31). Replace $\sigma(z/\zeta)$” by “$\sigma(z/\zeta)$”.

P. 398, lines -4 and -6. “$r^*$” becomes “$r^*$”.

P. 401, line 5, first sentence of VI.6: “its satisfies” becomes “it satisfies”.

P. 402, (iii). Missing period after ”itself SA”.


P. 403, line -15. Read as “locally inverted,”. (I.e., replace semicolon by comma in source file.)

P. 407, Note VI.17. Insert space after $\psi(u^p)$.

P. 409, lines +1. “$(1-)^r$ becomes “$(-1)^r$”.

P. 412, Section V.2, line +11. Overfull hbox.

P. 412, Example V.10, second display. Align second occurrence of “$\implies$” with first occurrence on previous line.

P. 425, line -8: “a product $d$ independent” becomes “a product of $d$ independent”

P. 426, lines -5, -6. The constant $K \doteq 0.8825424006106063735858257$ admits a closed form, as first found by Steven Finch and proved by Jon Borwein (private communication, October 2009). The last line of the display giving $K$ should mention this symbolic value

$$K = \frac{4\log 2}{\pi}.$$
On line -5, add to the parenthetical remark: “The explicit value of $K$ was observed by Steven Finch and proved by Jonathan Borwein, based on an Abelian limit process applied to an elliptic integral.”

P. 432, Example VI.17. Delete spurious commas after $v_1$ and $v_2$ in “$(u_1, v_1)$” and “$(u_2, v_2)$”.


P. 450, line -6. Read as “$\mathbb{F}_p[X]$ to $\mathbb{Z}[X]$”. (I.e., replace parentheses by square brackets.)

P. 454, line -19: “one component$\Sigma$” becomes “one component”.

P. 460, line -10: beginning of line should read as “degree 1, $n/8$ of degree 2”. (Correct spelling of “degree” and add comma after “1”.)

P. 461, centred table below Eq. (34): uncapitalize “Binary”.

P. 462, line -19: “number of a cyclic” becomes number of cyclic”.

P. 462, line -1: “thanks to generating functions” (i.e., need a plural).

P. 469, Lemma VII.2, line 1: read as “be a generating function”.

P. 473, Example VII.13. first display needs $\mathcal{Z}$ instead of simple $\mathcal{Z}$

P. 476, line -4: overfull hbox.

P. 478, first display below Figure VII.13. It’s proven again: alcohol leads to fuzzy thinking. The stated OGF $A(z)$ incorrect; it’s shifted, so we have really given $1 + zA(z)$. The correct OGF starts as $A(z) = 1 + z + z^2 + 2z^3 + 4z^4 + \cdots$.

P. 478, last display: “$35z^9$” becomes “$+ 35z^9$.

P. 481, line -5. Read as “$\mathcal{T}^\bullet + \mathcal{T}^\bullet \cong \mathcal{MSet}(\mathcal{H})$”. Line -3, formula (59) is to be changed into $\mathcal{I}^\bullet + \mathcal{I}^\bullet \cong \mathcal{I} + (\mathcal{H} \times \mathcal{H})$.

P. 486. Replace “EIS: Axxx” by “EIS Axxx” (use macro \EIS in source file).

P. 492, line +3: read as ” $\lambda(\rho) = 1$. In effect”. (I.e., period replaces comma.)

P. 495, line -7. Possibly spurious space before “The quantity”.

P. 496, line -7: “$y_{1,2}(z)$ becomes “$y_1(z)$”.

Manuel Kauers
16/09/2009

Nicolas Broutin
xx/05/2009

Jean-Philippe Conard
9/04/09

Svante Janson
29/05/2009

Christopher Hannua
12/08/2009

Manuel Kauers
16/09/2009

Manuel Kauers
16/09/2009

Svante Janson
29/05/2009

Manuel Kauers
16/09/2009

Manuel Kauers
16/09/2009
P. 498, line +2: read as \( \sum_{n=1}^{\infty} c_n \omega^{jn} z^{n/k} \). (I.e., the exponent of \( \omega \) should be corrected.)

P. 502, line -6. Delete extra space between “EIS” and “A054727.”

P. 503, line -7: “+ + 64z^0” becomes “+64z^0”.

P. 510, Eq. (94). The equation should start as “0 = 1 – z”.

P. 510, two lines before Proposition VII.9. “pull the BGF” becomes “pull out the BGF”.

P. 511, line +6 of Example VII.21. change ‘Polish” to “Polish”. (I.e., single quote becomes a double quote.)


P. 519, Equation (112): “\( c_r Y(z) \)” becomes \( c_r(z) Y(z) \).

P. 523, caption to Figure VII.21. Since we tried to write the book in English, rather than American, “center” should become “centre”.

P. 524, Equation (123): “\( \frac{du}{1-u} \)” becomes “\( \frac{du}{1-u} \)”.

P. 525, one line before Proppositio VII.12: “Summarizing ,” becomes “Summarizing,”.

P. 526, Note VII.21, line 9: check for the style of the closing parenthesis in “satisfies (E)”. 

P. 528, three lines before Proposition VII.13: delete spurious comma in “Singularity analysis .”.

P. 543, line -17 (third paragraph): “\(|f(z_0)(1 – \lambda r)\)” becomes “\(|f(z_0)|(1 – \lambda r)\)”.

P. 548, line+13 (beginning of second paragraph after theorem VII.2): “does no fix” becomes “does not fix”.

P. 553, TheoremVII.3, Item (ii): read as “a central approximation holds”.

P. 560, line +8: “\( f'(r) = 0 \)” becomes “\( f'(r) = 0 \).”. (I.e., add comma.)

P. 562, line +4: “explicit rephrases,” becomes “explicit, rephrases”. (I.e., shift comma.)

P. 563, line +3 (first display). Erase the two symbols “\( e \cdot \)” immediately following
the equal sign.

P. 563, Equation (44). Read as \( O \left( \exp \left( \sqrt{n} - n^{1/10} \right) \right) \). (I.e., change the style of the first opening parenthesis and add a matching closing parenthesis.)

P. 564, line -5: read as “In terms of \( G \) itself”. (delete spurious comma.)

P. 568, Note VIII.11, line 2. Replace “fails to be be” by “fails to be”.

P. 569, line -11: check overfull hbox (rephrase?).

P. 571, Note VIII.14. \textit{EIS A075729}.

P. 572, line -16: check overfull hbox (rephrase?).

P. 574, line -3: read as “a complete treatment.”. (I.e., interchange period and closing parenthesis.)

P. 579, line +3: read as “Andrews’”.

P. 584, line 7. \textit{EIS A000985} (delete one extra “A” in sequence reference).

P. 598, two lines before Example VIII.14: check overfull hbox (rephrase?).

P. 598, line -6: delete extra space in “hashing algorithms by means”.

P. 603, Note VIII.48: check overfull hbox (rephrase?).

P. 603, line -12: delete spurious space at the beginning of line, before “For”.

P. 604, first line after figure caption: read as \( dz = (1 - t)e^{-t} dt \). (I.e., add \( dt \) at the end of first formula.)

P. 619, line+13. This line, starting “The probability generating function”, should end with “\( 2^n \)” (but \textit{not} with “\( 2^{-n} \)”).

P. 621, Figure IX.5, line +4. Replace \( e^{\lambda(1-u)} \) by \( e^{\lambda(u-1)} \), as the correct PGF of a Poisson(\( \lambda \)) random variable.

P. 621, line +4 after figure caption. Read as “notion of convergence”.

P. 627, Theorem IX.13, first line of statement. Replace “\( E \)” by “\( E \)”. (I.e., use the usual symbol for Expectations.)

P. 628, lines 13 and 14 of Example IX.5. Read as: “Choosing now the value \( r = \log n \) in the statement of Theorem IX.3 provides”. (I.e., delete “value” before “provides” and insert “the value” after “now”.)
P. 632, Example IX.6, line +16. End sentence by a period.

P. 632, Example IX.6, line -3: “univarite” becomes “univariate”.

P. 633, Proof of Proposition IX.3. Replace “with g, one of the” by “with g one of the”.

P. 637, 3rd displayed equation from top: replace \( \frac{1}{(2-u)} \) by \( \frac{1}{(2-u)} \).

P. 642, 2nd line after Note IX. 18: “zentrale” becomes “zentrale”.

P. 645, 3rd line after the proof of Proposition IX.5: read as “leads, after normalization”.

P. 646, line -6, displayed equation. Replace “\( \frac{1}{k!} \)” by “\( \frac{1}{r!} \)” at the very beginning.

P. 650, line -5, immediately before Proposition IX.6. As the relevant notations are quite far away, earlier definitions should best be recalled before the statement of Proposition IX.6. Thus, to the paragraph preceding the statement, append the sentence (or footnote if it helps page breaks): “In what follows, we make use of our earlier notations (e.g., p. 251 and p. 411); namely for a generating function \( f \) with nonnegative coefficients, we let \( \rho_f \) represent its radius of convergence and set \( \tau_f := f(\rho_f) \), with \( \tau_f \leq +\infty \).”

P. 650, line -2, statement of Proposition IX.6. Replace “with a unique dominant singularity at \( \rho_g \), which is a simple pole” by “with the exception of a simple pole at \( \rho_g \)”.

P. 651, lines 5, -4, at the line break. Replace “\( h(z) = \rho \)” by \( h(z) = \rho_g \), (Improve the write-up?)

P. 652, Proposition IX.7, 2nd line: delete extra parenthesis in “\( \text{Seq}(uH) \)”.

P. 652, Proposition IX.7. Variance is \( \mathbb{V}(X_n) \sim n \frac{\rho h''(\rho) + h'(\rho) - \rho h'(\rho)}{\rho^2 h'(\rho)^3} \).

(The corresponding formula in Theorem V.1, p. 294, is correct.)

P. 653, line -4: delete spurious coma after “Equation (35)”.

P. 666, Note IX.33, line +4: read as “to build a finite automaton”.

P. 671, line +3. It may be preferable to indicate summation indices: “\( \sum \)” becomes “\( \sum_{n,k} \).”

P. 673, line -2. Replace “an algebraic function” by “an algebraic function”.

Cyril Banderier
18/07/2009
P. 680, 2nd display. Read: $T = Z u + Z \ast \operatorname{SET}_{\geq 1}(T)$.
(I.e., a $Z$ is missing before $\operatorname{SET}_{\geq 1}$.)

P. 683, end of long paragraph after the proof of Proposition IX.17: terminate the sentence with a period.

P. 684, indented paragraph tagged “Linear differential equations”, line +4. Add closing double quotes after “regular” and after “irregular”.

P. 691, last line before Example IX.31: change comma to period at the end of the paragraph.

P. 696, lines -3 and -5. Replace the two occurrences of “Theorem IX.14” by “Theorem VIII.8”.

P. 697, line +8: delete spurious comma before “of the function”.

P. 697, lines 12 and 13. Revert the sign of the inequalities, and read: “$\rho(1) \leq |\rho(u)|$” and “$\rho(1) < |\rho(u)|$”.

P. 697, line -4: insert opening brace “$\{$” before $\rho_j \} \in \mathbb{Z}$.

P. 697, end of Example IX.34: poor spacing before end-of-example marker (black square). Rephrase?

P. 697, line -2: replace period by comma before “the other ones”.

P. 701, Equation (91). Delete spurious opening parenthesis before $1 + O(\kappa_n^{-1})$.

P. 708, footnote 18. It could be added that “The function $S$ is related to functions considered by Mittag-Leffler, Wright, and others [Erdelyi81c, §18.1]” The corresponding bibliographic entry is:


P. 712, Proposition IX.24, Case (ii). This case needs checking and adjustments. From e-mail message by MN and OG: “It seems to us that the claim in Proposition IX.24 (ii) is not accurate. We believe that in this case the distribution is not bimodal since cores of constant size have probability $0$ as $n \to \infty$.”

P. 718, quotation from the Bible: delete extra parenthesis at the end of the English translation.

P. 734, display at line-6. Read: $L_{i,j}^{(r)} = L_{i,j}^{(r-1)} + L_{i,r}^{(r-1)} \operatorname{SEQ}(L_{i,r}^{(r-1)}) L_{r,j}^{(r-1)}$.
(I.e., delete spurious “(S)” in the middle of the formula.)

P. 739, line-1. Read as “If $P(x), Q(x)$” (thus replace ff by If).
P. 751, lines 1–2. Read as “the notation $a^\underline{n}$ for representing the rising factorial $a(a + 1) \cdots (a + n - 1)$.”

Equations (24) and (26): change accordingly $(\cdot)_n$ to $(\cdot)^\underline{n}$. (Also check consistency of this notation.)

P. 759, Note B.22. The coefficient in the $O(n^{-1})$ error term needs adjustment. Also, the coefficients $g_j$ need to be specified precisely.

P. 762, Note B.24. The last display should have $S^r_n$ replaced by $S^{(r)}_n$, in accordance with earlier conventions in this Note.

P. 774. Equation (4). Middle line should read:

$$
\mu^{(2)} = \frac{d^2}{ds^2} \lambda(s) \bigg|_{s=0} = - \frac{d^2}{dt^2} \phi(t) \bigg|_{t=0}.
$$

(I.e., replace $\frac{d}{dt}$ by $\frac{d^2}{dt^2}$.)

P. 775, Figure C.1, line +5. Replace $\lambda^k k!$ by $\frac{\lambda^k}{k}$, to get the correct form of the probabilities of a logarithmic-series random variable. (The form given on p. 297 is correct.)

P. 775, Figure C.1, line +6. Replace $e^{\lambda(1-u)}$ by $e^{\lambda(u-1)}$, as the correct PGF of a Poisson($\lambda$) random variable.

References

P. 785, Ref. [178]. Replace “Ruble” by “Rubel”.

P. 792, references [377-379]. It would be desirable to have TAOCP vol 2 come before TAOCP vol 3 in the bibliography (hack bibtex?).