##### About Equation BI.2.1.2.3
top up back next into bottom

Absolute reference: BI:asympt:0:RDLBLRDGENFORMRDIC
###### LaTeX encoding
top up back next into bottom
u (0) = \frac{3^{\frac{5}{6}}}{3 \Gamma \Bigl(\frac{2}{3}\Bigr)}
u (1) = \frac{3^{\frac{2}{3}} \Gamma \Bigl(\frac{2}{3}\Bigr)}{2 \pi}
u (2) = 0
###### Maple encoding
u(0) = 1/3*3^(5/6)/GAMMA(2/3)
u(1) = 1/2*3^(2/3)/Pi*GAMMA(2/3)
u(2) = 0
###### MathML encoding
top up back next into bottom
<math xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow xref='id13'><mrow xref='id3'><mi xref='id1'>u</mi><mo>&ApplyFunction;</mo><mfenced><mn xref='id2'>0</mn></mfenced></mrow><mo>=</mo><mrow xref='id12'><mfrac xref='id4'><mn>1</mn><mn>3</mn></mfrac><mo>&InvisibleTimes;</mo><mrow xref='id11'><mfrac><mrow xref='id7'><msup><mn xref='id5'>3</mn><mfrac xref='id6'><mn>5</mn><mn>6</mn></mfrac></msup></mrow><mrow xref='id10'><mi>&Gamma;</mi><mo>&ApplyFunction;</mo><mfenced><mfrac xref='id9'><mn>2</mn><mn>3</mn></mfrac></mfenced></mrow></mfrac></mrow></mrow></mrow><annotation-xml encoding='MathML-Content'><apply id='id13'><eq/><apply id='id3'><ci id='id1'>u</ci><cn id='id2' type='integer'>0</cn></apply><apply id='id12'><times/><cn id='id4' type='rational'>1<sep/>3</cn><apply id='id11'><divide/><apply id='id7'><power/><cn id='id5' type='integer'>3</cn><cn id='id6' type='rational'>5<sep/>6</cn></apply><apply id='id10'><csymbol id='id8' definitionURL='http://www.maplesoft.com/MathML/GAMMA'>GAMMA</csymbol><cn id='id9' type='rational'>2<sep/>3</cn></apply></apply></apply></apply></annotation-xml><annotation encoding='Maple'>u(0) = 1/3*3^(5/6)/GAMMA(2/3)</annotation></semantics></math>
<math xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow xref='id15'><mrow xref='id3'><mi xref='id1'>u</mi><mo>&ApplyFunction;</mo><mfenced><mn xref='id2'>1</mn></mfenced></mrow><mo>=</mo><mrow xref='id14'><mfrac xref='id4'><mn>1</mn><mn>2</mn></mfrac><mo>&InvisibleTimes;</mo><mrow xref='id13'><mfrac><mrow xref='id11'><mrow xref='id7'><msup><mn xref='id5'>3</mn><mfrac xref='id6'><mn>2</mn><mn>3</mn></mfrac></msup></mrow><mo>&InvisibleTimes;</mo><mrow xref='id10'><mi>&Gamma;</mi><mo>&ApplyFunction;</mo><mfenced><mfrac xref='id9'><mn>2</mn><mn>3</mn></mfrac></mfenced></mrow></mrow><mn xref='id12'>&pi;</mn></mfrac></mrow></mrow></mrow><annotation-xml encoding='MathML-Content'><apply id='id15'><eq/><apply id='id3'><ci id='id1'>u</ci><cn id='id2' type='integer'>1</cn></apply><apply id='id14'><times/><cn id='id4' type='rational'>1<sep/>2</cn><apply id='id13'><divide/><apply id='id11'><times/><apply id='id7'><power/><cn id='id5' type='integer'>3</cn><cn id='id6' type='rational'>2<sep/>3</cn></apply><apply id='id10'><csymbol id='id8' definitionURL='http://www.maplesoft.com/MathML/GAMMA'>GAMMA</csymbol><cn id='id9' type='rational'>2<sep/>3</cn></apply></apply><pi id='id12'/></apply></apply></apply></annotation-xml><annotation encoding='Maple'>u(1) = 1/2*3^(2/3)/Pi*GAMMA(2/3)</annotation></semantics></math>
<math xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow xref='id5'><mrow xref='id3'><mi xref='id1'>u</mi><mo>&ApplyFunction;</mo><mfenced><mn xref='id2'>2</mn></mfenced></mrow><mo>=</mo><mn xref='id4'>0</mn></mrow><annotation-xml encoding='MathML-Content'><apply id='id5'><eq/><apply id='id3'><ci id='id1'>u</ci><cn id='id2' type='integer'>2</cn></apply><cn id='id4' type='integer'>0</cn></apply></annotation-xml><annotation encoding='Maple'>u(2) = 0</annotation></semantics></math>

 This web site is compliant with HTML 4.01 and CSS 1. Copyright © 2001-2003 by the Algorithms Project and INRIA. All rights reserved. Created: Aug 1 2003 15:08:39.