##### About Equation ACS.2.2.2.4
top up back next into bottom

Absolute reference: ACS:asympt:1:RDINREFRDGENFROMRDCLOSED
###### LaTeX encoding
top up back next into bottom
u (n) = \frac{i 2^{\bigl(n + \frac{1}{2}\bigr)} \Gamma \Bigl(n + \frac{1}{2}\Bigr) (-1)^{n}}{4^{n} \Gamma (n + 1) \sqrt{\pi} (2 n + 1)}
###### Maple encoding
u(n) = I*2^(n+1/2)*4^(-n)/GAMMA(n+1)/Pi^(1/2)*GAMMA(n+1/2)/(2*n+1)*(-1)^n
###### MathML encoding
top up back next into bottom
<math xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow xref='id38'><mrow xref='id3'><mi xref='id1'>u</mi><mo>&ApplyFunction;</mo><mfenced><mi xref='id2'>n</mi></mfenced></mrow><mo>=</mo><mrow xref='id37'><mn xref='id4'>&ImaginaryI;</mn><mo>&InvisibleTimes;</mo><mrow xref='id36'><mfrac><mrow xref='id22'><mrow><mrow><mrow xref='id9'><msup><mn xref='id5'>2</mn><mfenced><mrow xref='id8'><mi xref='id6'>n</mi><mo>+</mo><mfrac xref='id7'><mn>1</mn><mn>2</mn></mfrac></mrow></mfenced></msup></mrow><mo>&InvisibleTimes;</mo><mrow xref='id13'><msup><mn xref='id10'>4</mn><mfenced><mrow xref='id12'><mo>-</mo><mi xref='id11'>n</mi></mrow></mfenced></msup></mrow></mrow><mo>&InvisibleTimes;</mo><mrow xref='id18'><mi>&Gamma;</mi><mo>&ApplyFunction;</mo><mfenced><mrow xref='id17'><mi xref='id15'>n</mi><mo>+</mo><mfrac xref='id16'><mn>1</mn><mn>2</mn></mfrac></mrow></mfenced></mrow></mrow><mo>&InvisibleTimes;</mo><mrow xref='id21'><msup><mfenced><mn xref='id19'>-1</mn></mfenced><mi xref='id20'>n</mi></msup></mrow></mrow><mrow xref='id35'><mrow><mrow xref='id27'><mi>&Gamma;</mi><mo>&ApplyFunction;</mo><mfenced><mrow xref='id26'><mi xref='id24'>n</mi><mo>+</mo><mn xref='id25'>1</mn></mrow></mfenced></mrow><mo>&InvisibleTimes;</mo><mrow xref='id29'><msqrt><mn xref='id28'>&pi;</mn></msqrt></mrow></mrow><mo>&InvisibleTimes;</mo><mfenced><mrow xref='id34'><mrow xref='id32'><mn xref='id30'>2</mn><mo>&InvisibleTimes;</mo><mi xref='id31'>n</mi></mrow><mo>+</mo><mn xref='id33'>1</mn></mrow></mfenced></mrow></mfrac></mrow></mrow></mrow><annotation-xml encoding='MathML-Content'><apply id='id38'><eq/><apply id='id3'><ci id='id1'>u</ci><ci id='id2'>n</ci></apply><apply id='id37'><times/><imaginaryi id='id4'/><apply id='id36'><divide/><apply id='id22'><times/><apply id='id9'><power/><cn id='id5' type='integer'>2</cn><apply id='id8'><plus/><ci id='id6'>n</ci><cn id='id7' type='rational'>1<sep/>2</cn></apply></apply><apply id='id13'><power/><cn id='id10' type='integer'>4</cn><apply id='id12'><minus/><ci id='id11'>n</ci></apply></apply><apply id='id18'><csymbol id='id14' definitionURL='http://www.maplesoft.com/MathML/GAMMA'>GAMMA</csymbol><apply id='id17'><plus/><ci id='id15'>n</ci><cn id='id16' type='rational'>1<sep/>2</cn></apply></apply><apply id='id21'><power/><cn id='id19' type='integer'>-1</cn><ci id='id20'>n</ci></apply></apply><apply id='id35'><times/><apply id='id27'><csymbol id='id23' definitionURL='http://www.maplesoft.com/MathML/GAMMA'>GAMMA</csymbol><apply id='id26'><plus/><ci id='id24'>n</ci><cn id='id25' type='integer'>1</cn></apply></apply><apply id='id29'><root/><pi id='id28'/></apply><apply id='id34'><plus/><apply id='id32'><times/><cn id='id30' type='integer'>2</cn><ci id='id31'>n</ci></apply><cn id='id33' type='integer'>1</cn></apply></apply></apply></apply></apply></annotation-xml><annotation encoding='Maple'>u(n) = I*2^(n+1/2)*4^(-n)/GAMMA(n+1)/Pi^(1/2)*GAMMA(n+1/2)/(2*n+1)*(-1)^n</annotation></semantics></math>

 This web site is compliant with HTML 4.01 and CSS 1. Copyright © 2001-2003 by the Algorithms Project and INRIA. All rights reserved. Created: Aug 1 2003 15:07:58.